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Abstract: Despite preceding studies of transients in non-Newtonian fluids that use two-dimensional (2D) models to predict the velocity
gradient required to estimate unsteady losses, this study proposes an efficient one-dimensional (1D) approach. To this aim, Zielke’s solution
of unsteady friction is adopted for power-law and Cross fluids. The Hagen–Poiseuille profile is assumed for variations of axial velocity at each
cross section, thus allowing for the computation of the shear rate to describe the viscosity in a specific non-Newtonian fluid (e.g., using power-
law). The calculated transient viscosity updates the weight function of Zielke’s model at each time increment in an iterative process. To verify
the proposed numerical solution, the computational results are compared with available experimental data from literature and with an alter-
native 2D numerical solution. The comparisons demonstrate that although the proposed method is extremely simpler for practical appli-
cations, it is efficient and provides reasonable results. DOI: 10.1061/(ASCE)PS.1949-1204.0000454. © 2020 American Society of Civil
Engineers.
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Introduction

Transient flows are often observed in both natural and engineering
systems, such as blood flow in the human arterial network, power
plants, and oil transportation pipelines. During a transient pipe
flow, a series of positive and negative pressure waves have emerged
that form as a consequence of sudden changes in boundary condi-
tions (Brunone et al. 2000). In industrial systems, such excitations
can be caused by some events such as pump start up or stoppage,
valve maneuvers, and bursts. In biological systems, unsteady flows
are generated by several factors such as a person’s heartbeat and
strokes. The transient events can sometimes produce considerable
pressures with huge forces (Wylie et al. 1993). Fluids treated in the
classical theory of fast transient flows are generally Newtonian flu-
ids; however, the majority of complex fluids used in practical ap-
plications exhibit shear-thinning behavior. The unsteady flow of
non-Newtonian fluids may be approached from three perspectives.
The first perspective is to distinguish between laminar and turbulent
flows; the second is to examine fluid behaviors during steady and
unsteady flows, and the third is to determine the properties of New-
tonian and non-Newtonian fluids (Irgens 2013; Chen and Barbieri
2013). Mathematical modeling of non-Newtonian flows forms a
fundamental research topic in fluid mechanics.

In recent years, the simulation of non-Newtonian fluids in an
unsteady state is implemented using complex two-dimensional
(2D) models that calculate the velocity gradient (Wahba 2013;
Tazraei and Riasi 2015; Majd et al. 2016; Azhdari et al. 2017). Un-
like one-dimensional (1D) models, the 2D models require a high
volume of mathematical operations and computational efforts. To
simplify this deficiency, this study adopts a 1D model to approxi-
mate the velocity gradient and to estimate the unsteady friction.
More specifically, the velocity profile is assumed to follow the
Hagen–Poiseuille velocity profile; hence, the gradient of this veloc-
ity profile is incorporated.

Unsteady friction models are exploited for modeling the shear
stress variations in the momentum relation. To this aim, the most
prominent research in the field of unsteady friction for Newtonian
fluids is Zielke’s analytical solution for laminar flows (Zielke
1968). The Zielke complex solution, however, suffers from the
need for a heavy computational process. In fact, due to the depend-
ence of the unsteady friction term on the history of flow fluctua-
tions, it is necessary to repeat the calculations for each time step
from the beginning of the onset of transients. Therefore, numerical
computations developed for the original Zielke’s model are cum-
bersome, so their use in engineering works is limited. However,
several researchers used Zielke’s theoretical relations for transients
in 1D flows as a reference for validating their solutions (Trikha
1975; Achard and Lespinard 1981; Kagawa et al. 1983; Brown
1984; Suzuki et al. 1991). Vardy and Brown (1995, 2004a) derived
weighting functions from a uniform core approximation of shear
layer in transient turbulent flow. The researchers proposed relation-
ships for smooth-pipe turbulent flows (Vardy and Brown 1995,
1996, 2003) and rough-pipe turbulent flows (Vardy and Brown
2004a) by dividing the cross-sectional area of the pipe into different
regions, but the problem is still the complexity of numerical com-
putations of the convolution integral term and the timing of analy-
sis, which is similar to Zielke’s method. Vítkovský et al. (2006a, b)
offered a quick, efficient, and accurate procedure to implement
the Zielke transient friction solution. The authors approximated
the original weighting functions in the convolution integrals by
exponential functions allowing for favorable recursive num-
erical approximations to the integrals. Wahba (2006) adopted the
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Runge–Kutta (for time derivatives) and central difference (for spa-
tial derivatives) scheme to simulate fast transients of 1D and 2D
flows including both laminar and turbulent cases. Wahba (2006)
showed his proposed method is in good agreement with analytical
solutions and experimental data available from the literature.

The major contribution of Brunone et al. (1991, 1995, 2000) to
the unsteady friction simulation led to a new approach for modeling
transients supported by several scientists. The scheme, being more
simple but efficient, adopts a spacial acceleration that accounts for
the complex convolution integral.

Pezzinga (1999, 2000) proposed a quasi-2D model for transient
turbulent flow of a pipe network and found better results than 1D
models. In addition, Pezzinga et al. (2014) analyzed transients
based on the 2D simulation in pressurized polymeric pipes modeled
by Kelvin–Voigt elements. Significant differences between the
transient response of viscoelastic and elastic pipes are indicated
in their model. The authors showed that viscoelastic models re-
present a faster decay of pressure oscillations and velocity profiles
because of a time-lag between pressure oscillations and retarded
circumferential strain. Vardy and Brown (2010, 2011) proposed
solutions for unsteady pipe flows of non-Newtonian fluids with
time-dependent viscosities. The results showed that such flows
can be analyzed relatively simply by the use of finite Hankel trans-
forms, and from which, the authors have found results of favorable
accuracy.

It is necessary to mention the fundamental researches on non-
Newtonian pipe flow that were conducted by Metzner and Reed
(1955) and Dodge and Metzner (1959) who reported the variation
of friction factor with Reynolds number in laminar, transitional,
and turbulent flows of shear-thinning fluids. The investigations of
Pinho and Whitelaw (1990) and later Escudier et al. (1992) on tur-
bulent flows with shear-thinning incorporating power-law indices
between 0.39 and 0.90 showed significant drag force reduction. In
the present work, the viscosity is described using either the power-
law (Ikoku and Ramey 1978; Chhabra and Richardson 2011; Irgens
2013) or Cross (Chhabra and Richardson 2011) models. Several
researchers such as Toms (1948), Holmboe and Rouleau (1967),
Ikoku and Ramey (1978), and Bird et al. (1987) investigated the
capability of these models via experimental and numerical studies.

Wahba (2013) studied the effects of non-Newtonian nature of
unsteady flow using 2D numerical simulation. He realized that
transient layers were strongly influenced by the non-Newtonian
fluid behavior for both shear-thinning and shear-thickening fluids.
Tazraei and Riasi (2015) worked on the laminar fast transient
flow, specifically its difference between shear-thinning liquids and
Newtonian liquids under similar conditions. The results showed
that the non-Newtonian behavior of fluids has a significant influ-
ence on the velocity and shear stress profiles and also on the mag-
nitude of pressure head and wall shear stress. Similarly, Majd et al.
(2016) investigated the unsteady laminar flow in power-law and
Cross models. They concluded that the reduction of viscosity at
the pipe wall decreases the frictional forces and hence leads to a
decreased line-packing effect. In addition, Azhdari et al. (2017)
presented a parametric study on the laminar fast transient flow of
the power-law fluids through helical pipes. The results demon-
strated that the main characteristics of the unsteady flow such as
pressure head response, velocity and shear stress profiles, and wall
shear stress change because of the nature of Newtonian and non-
Newtonian fluid during transients. Sadikin et al. (2018) recently
studied the effect of temperature on non-Newtonian fluids. Focused
on industrial implications, they showed that the rheological proper-
ties of such fluids significantly affect the packaging process of spe-
cific liquids. As a case study, the researchers illustrated the effect of
temperature on the viscosity of chili sauce during packaging.

In the present study, a 1D solution for the transient flow of
non-Newtonian fluids is proposed. Transients in shear-thinning
non-Newtonian fluids, which are a sub-branch of the generalized
Newtonian fluids is studied. The main characteristic of these fluids
is that the isotropic viscosity of such fluids depends on flow proper-
ties (Bird et al. 1987; Chhabra and Richardson 2011; Irgens 2013).
Specifically, in the current research, the viscosity is described using
either the power-law or Cross models (Majd et al. 2016). The
numerical solution based on the method of characteristics (MOC)
is first developed and then it is adopted to simulate transients of
such non-Newtonian fluids in a reservoir-pipe-valve system. The
results of the proposed solution scheme are then compared with the
conventional 2D solutions in terms of time histories of pressure
head and velocity profiles at the midpoint of the pipe.

Mathematical Model

Transient Flow and Quasi-Steady Friction

To estimate the dischargeQ and pressure head H averaged over the
cross-sectional area of flow, the classical 1D water-hammer theory
is adopted, which is governed by the momentum equation

∂H
∂z þ 1

gA
∂Q
∂t þ β ¼ 0; β ¼ βs þ βu ð1Þ

and the continuity equation

∂H
∂t þ a2

gA
∂Q
∂z ¼ 0 ð2Þ

where t = time; z = distance along the pipe centerline; g = gravi-
tational acceleration; D = inside pipe diameter; A = cross-sectional
flow area; and a = wave speed of the fluid (Daily et al. 1956;
Brunone et al. 1991, 1995; Chaudhry 2014). The frictional term
(β) can be decomposed as βs þ βu, where the first term (βs) rep-
resents the contribution of viscous forces related to the quasi-steady
flow condition and the other term (βu) represents the contribution
of unsteady behavior of fluid’s shear stress at the pipe wall. The
frictional head loss associated with quasi-steady flow conditions
(βs) is quantified according to the well-known Darcy–Weisbach
equation (Travaš and Basara 2015)

βs ¼
λ
D

·
V jVj
2g

ð3Þ

in which, V = average cross-sectional velocity; and λ = Darcy–
Weisbach friction factor. In the laminar flow regime, the friction
factor λ is derived based on the Reynolds number (R):

λ ¼ 64

R
ð4Þ

Eqs. (3) and (4) are valid for Newtonian fluids. For power-law
fluids under consideration, the generalized Reynolds number (Rg)
introduced by Metzner and Reed (1955) is defined

Rg ¼
ρV2−nDn

8n−1mð3nþ1
4n Þn ð5Þ

in which, m = power-law consistency coefficient; n = power-law
index; and ρ = fluid density. Considering a fully developed steady-
state laminar flow, the following equation between the generalized
Reynolds number, friction factor λ, wall shear stress (τw;ss) and
average (over flow cross section) velocity V applies (Wahba 2013;
Irgens 2013)
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λ ¼ 2τw;ss
ρV2

¼ 16

Rg
ð6Þ

Unsteady Friction in Newtonian Fluids

The unsteady friction term (βu) based on the original version of
Zielke’s model (1968) comprises the convolution of a weight func-
tion (W) with transient flow accelerations ∂V=∂t, as follows:

βu ¼
16υ
gD2

YðtÞ; YðtÞ ¼
Z

t

0

Wðt − sÞ ∂V∂s ðsÞds ð7Þ

in which, υ = kinematic viscosity. The weight function W accounts
for the initial flow conditions (the Reynolds number of the flow)
and the relative roughness of the pipe wall. The implementation of
the original Zielke’s model requires a large computer storage.
Therefore, several researchers suggested remedies to resolve this
drawback aiming to enhance the computational efficiency. Vardy
and Hwang (1991) showed good matches between a 2D shell
model of transient laminar flow and the Zielke weighting function.
Ghidaoui andMansour (2002) showed the Vardy–Brown weighting
function produced good matches with the quasi-2D model of
Pezzinga (1999) for smooth-pipe turbulent flow as well as with
experimental data. Most importantly, Vítkovský et al. (2004) pro-
vided approximate expressions for the weighting functions of differ-
ent flow regimes including laminar, smooth-pipe turbulent, and
rough-pipe turbulent flow. The authors used a scaling approach;
hence, their method did not require re-fitting (by minimization) for
different Reynolds numbers of flow and pipe relative roughness,
whereas, the Vardy and Brown (2004b) approach required re-fitting.

Non-Newtonian Fluids Definition

Non-Newtonian fluids can be divided into three general categories:
time-independent fluids, time-dependent fluids, and visco-elastic
fluids (Chhabra and Richardson 2011). This paper focuses on the
simplest type, which falls into the time-independent fluids category,
known as power-law fluids.

Power-Law Model
For a power-law fluid, the rheological equation relating the shear
stress η to the shear rate dVz=dr is similar to Newtonian fluids with
this difference that the relationship between the two quantities is no
longer linear and can be expressed as

η ¼ m

�
dVz

dr

�
n−1

¼ mðγ̇Þn−1 ð8Þ

This definition implies that the shear stress versus an exponent
of shear rate can be represented by a straight line which in reality
may apply for a range of shear rates (or stresses). Considering
Eq. (8), for shear-thinning fluids, n < 1; for shear-thickening fluids,
n > 1; and for Newtonian fluids, n ¼ 1, which then m ¼ μ, where
μ represents the dynamic viscosity of the Newtonian fluid (Chhabra
and Richardson 2011; Irgens 2013; Wahba 2013).

Cross Model
The Cross representation is a more advanced model with four
parameters that are also more consistent with reality. The variation
of viscosity η in this fluid is bounded by two specified parameters;
hence

η − η∞
η0 − η∞

¼ 1

1þ kγ̇n
ð9Þ

In Eq. (9), n ð< 1Þ and k are fitting parameters, whereas η0
and η∞ are lower and upper-bound quantities of viscosity that

correspond to low and high shear rates, respectively. The Cross
fluid becomes Newtonian if k ¼ 0. Similarly, for η ≪ η0 and
η ≫ η∞, the model reduces to the previously defined power-law
model in Eq. (8) (Chhabra and Richardson 2011).

Unsteady Friction in Non-Newtonian Fluids

The aim of this section is to derive a kinematic viscosity pro-
portionate to the type of desired non-Newtonian fluid, based on
Zielke’s model. The proposed kinematic viscosity, which includes
the properties of power-law or Cross fluid, is then exploited for the
estimation of the existing weighting functions derived for the com-
putation of the transient friction. This research adopts Vardy and
Brown’s (1995) weighting function developed based on Zielke’s
approach

WðτÞ ¼ A�e−½ð
4υt

D2C�Þ�ffiffiffiffiffi
4υt
D2

q ð10Þ

where t = time; A� ¼ ð2 ffiffiffi
π

p Þ−1; and C� ¼ 0.0047 are constants in
laminar flows.

Power-Law Fluid

In view of the kinematic viscosity relation (υ ¼ ηρ−1) and the
power-law model [Eq. (8)], the following relation governes the
kinematic viscosity of the power-law fluid:

υ ¼ mðdVz
dr Þn−1
ρ

¼ mðγ̇Þn−1
ρ

ð11Þ

where Vz = axial (z-component) velocity; ρ = fluid density; and
γ̇ = Shear rate. Eq. (11) shows that to compute the viscosity, using
2D solutions is required, allowing the computation of the velocity
profile in the flow cross section and hence the velocity gradient
(Wahba 2013; Tazraei and Riasi 2015; He et al. 2016; Majd
et al. 2016; Azhdari et al. 2017). In this research, however, the
velocity profile during the transient state is assumed to be governed
by the Hagen–Poiseuille velocity profile (Chhabra and Richardson
2011; Irgens 2013). In other words, the actual variations of the
velocity profile and hence the viscosity are neglected, and instead,
steady-state flow characteristics (Hagen–Poiseuille profile) are
assumed to remain during transients. With this fundamental simpli-
fication for the velocity profile, the average cross-sectional discharge
(Q) against shear stress (τ rz) for power-law fluid is found to be

Q ¼ πR3

τ 3w

Z
τw

0

τ2rz

�
τ rz
m

�
1=n

dτ rz ð12Þ

The derivation of Eq. (12) is presented in Appendix I. Further
simplification of Eq. (12) yields

Q ¼ πR3n

ð3nþ 1Þm1=n τ
1=n
w ð13Þ

According to Eq. (13) and the shear stress relation (for power-
lawmodel) at wall ðτ1=nw ¼ m1=nγ̇Þ, the following shear rate relation
is obtained for power-law fluid (Khan 1992)

γ̇ ¼
�
8V
D

��
3nþ 1

4n

�
ð14Þ

The coefficient ð3nþ 1Þð4nÞ−1 is a correction factor that is in-
troduced because of the power-law fluid, noting that γ̇ ¼ 8VD−1

© ASCE 04020019-3 J. Pipeline Syst. Eng. Pract.
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for Newtonian fluids. The derived shear rate relation in Eq. (14) is
substituted in Eq. (11) to determine the viscosity corresponding to
the power-law fluid

υ ¼ m
ρ

�
8V
D

×
3nþ 1

4n

�
n−1

ð15Þ

Note that the computed kinematic viscosity is treated as a tran-
sient quantity, which is updated at each time step.

Cross Fluid

The purpose of this section is to find the kinematic viscosity
υ ¼ ηρ−1 in terms of the mean velocity for the Cross model. The
resultant kinematic viscosity is then substituted in Eq. (10) to com-
pute the weighting function.

Assuming the Hagen–Poiseuille profile of the pipe flow
(Chhabra and Richardson 2011; Irgens 2013), the following rela-
tion links the mean velocity, wall shear stress, and shear rate:

γ̇ ¼
�
8V
D

��
3ðd ln τwÞðd lnð8V=DÞÞ−1 þ 1

4ðd ln τwÞðd lnð8V=DÞÞ−1
�

ð16Þ

where its derivation is provided in Appendix II. For the definition
of the wall shear stress (τw), the Cross fluid model represented
in Eq. (9) is used. Accordingly, the general shear stress relationship
(τw ¼ γ̇η) considering the Cross model (given η0; η∞; k; n)
becomes

τw ¼ γ̇

�
η0 − η∞
1þ kγ̇n

þ η∞
�

ð17Þ

One may substitute for τw from Eq. (17) in Eq. (16) to arrive at a
relation as a function of the shear rate. Having found the shear rate,
the dynamic (absolute) viscosity η is found from Eq. (9); then, it
allows for the computation of the desired kinematic viscosity and
hence the weighting function.

Numerical Simulation

The major concern of transients simulation in non-Newtonian flu-
ids is the estimation of shear stress that itself is determined by the
fluid viscosity. The viscosity is essentially relevant to the variations
of the cross-sectional velocity profile; hence, 2D simulations seem
inevitable. However, the remarkable efforts on transforming the ef-
fects of the velocity profile (2D behavior) during water hammering
to 1D quantities (Zielke 1968) and facilitating its implementation
(Vardy and Brown 1995, 1996, 2003, 2004a; Vítkovský et al. 2004)
can be adopted for simulating transients in non-Newtonian fluids.
To this aim, the fluid viscosity is updated at each space and time
step based on the mean velocity and the specific definition of the
non-Newtonian property. Having found an approximate viscosity at
each section, calculations at each time step proceeded by using the
methods provided in the literature, but with improved viscosities.
The MOC scheme and the entire iterative process are detailed in
this section.

MOC Solution

In this paper, the MOC solution is used to simultaneously solve the
momentum and the continuity equations. The final expressions
along the positive ðCþÞ and negative ðC−Þ characteristic lines
are represented respectively as follows (Chaudhry 2014):

Cþ:QP ¼ CP − CaþHP ð18Þ

C−:QP ¼ CN þ Ca−HP ð19Þ
where CP;CN ;Caþ, and Ca− = coefficients evaluated through

CP ¼ QA þ BHA þ C 0
P1 þ C 00

P1

1þ C 0
P2 þ C 00

P2
ð20Þ

Caþ ¼ B
1þ C 0

P2 þ C 00
P2

ð21Þ

CN ¼ QB − BHB þ C 0
N1 þ C 00

N1

1þ C 0
N2 þ C 00

N2

ð22Þ

Ca− ¼ B
1þ C 0

N2 þ C 00
N2

ð23Þ

The definitions of the coefficients/variables in Eqs. (20)–(23)
depend on the numerical scheme used to describe the quasi-steady
and the unsteady friction terms, as illustrated in Appendix III.

Numerical Simulation Algorithm

The proposed 1D solution of transients in the specified non-
Newtonian fluids can be implemented through the following steps.
1. Perform a steady-state analysis to determine the initial condi-

tions of the problem. The energy (Bernoulli) equation in con-
junction with Eqs. (3)–(6) are used to estimate pressure head
loss.

2. Eqs. (18)–(23) are used to calculate the pressure head and flow
rate at the next time step. The coefficients of the characteristics
equations are derived in Appendix III.

3. The estimated flow rate at the current time step is employed to
find the transient viscosity using Eq. (15). This procedure is per-
forming for all spatial nodes of MOC at the current time step.

4. Check the convergence of viscosity jυrþ1 − υrj · υ−1r < 10−3,
where the subscript r stands for the iteration number (or the con-
vergence of the flow rate). If it is reached, go to step 5; other-
wise, move to step 2 to iterate the procedure and improve the
transient unknowns. In the latter case, given the new viscosity
quantities corresponding to each node (obtained in step 3), the
coefficients of characteristics Eqs. (18)–(23) are updated.

5. Proceed to the next time step tnþ1 ¼ tn þΔt and repeat the
computations from step 2.

Numerical Results

Some of the main characteristics of the unsteady flow such as pres-
sure head response, velocity, and shear stress profiles are scruti-
nized. The focus is placed upon the fluid hammer considering
its behavior in the Newtonian and non-Newtonian fluids. After
verifying the proposed numerical solution with that of the literature
(Wahba 2013; Tazraei and Riasi 2015; Majd et al. 2016), the effects
of the non-Newtonian fluids are investigated.

A pseudo-plastic liquid that behaves as a shear-thinning fluid is
studied, as it is the most common non-Newtonian fluid in applica-
tions. The proposed 1D solution of unsteady flow in power-law
fluids is implemented, and its results are presented in this section.
The convergence of the numerical solution subject to different
mesh sizes is first studied followed by comparison with experimen-
tal data from the literature. Finally, several figures show the effects
of the non-Newtonian property of fluid on transients.
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Pipe System Specification

Consider the Joukowsky formula for the transient pressure rise
(ΔH ¼ aV0g−1) that means the value of the transient pressure just
after the excitation is directly related to the pressure wave speed
and initial velocity (steady state). In this view, the same steady-
state velocity is used for all simulations so the pressure rise of all
tests is equivalent and hence the transient responses are merely
investigated.

The pipe is made from copper and has an inner diameter D ¼
0.025 m, wave speed a ¼ 1; 324 ms−1, and length L ¼ 36.09 m.
The operating non-Newtonian fluid is high viscosity oil with dy-
namic viscosity η ¼ 0.03484 Pa · s and density ρ ¼ 876 kgm−3.
The coefficients of the power-law model are chosen to be η ¼
η0 and n ¼ 0.6. The initial viscosity of the power-law model is
set to the viscosity of the corresponding Newtonian fluid; thus,
for n ¼ 1, the characteristics of the Newtonian fluid is achieved.
With this value of the initial viscosity, the computational results
of Newtonian fluid can readily be compared with those of non-
Newtonian. Besides, the flow characteristics, which result from
the nonlinear fluid property, can be identified. The Reynolds num-
ber for this laminar flow case is 82, and the fluid transient is gen-
erated by the sudden closure of the downstream valve (Fig. 1).

Verification of the Computational Solution

The computational results are examined subject to three concerns.
First, the sensitivity of the results with respect to the adopted mesh
size is assessed. Then, the calculated pressures heads are compared
with some laboratory data available from the literature. Lastly, the
results of the proposed 1D model are compared with those of the
2D model presented by Majd et al. (2016).

Convergence
Any numerical result should be tested against sensitivity to the
mesh size it uses. This property of a valid numerical scheme is
shown in Fig. 2, in which the variations of pressure head versus
different mesh sizes are examined. The computed pressure heads

correspond to the valve location and time t ¼ 0.1117 (s) and belong
to the Newtonian (n ¼ 1) and power-law fluid with n ¼ 0.6, 0.8.
The results, for a relatively small mesh size, converge to a true
quantity, and after which, no significant change is observed in the
computations.

Comparison with Experimental Data
A laboratory transients test on the pipe system with the details stated
in the pipe system specifications section was performed at Research
and Advanced Development Avco Corporation by Holmboe and
Rouleau (1967). The results presented in this experiment were later
used by several researchers to validate their proposed mathematical
or numerical solution (Wahba 2013; Tazraei and Riasi 2015; Majd
et al. 2016).

The experiment results illustrate time histories of pressure
heads at the valve and pipe midpoint for the Newtonian fluid case
(n ¼ 1). Figs. 3 and 4 compare the nondimensional experimental
data (Holmboe and Rouleau 1967) with the results of the imple-
mented numerical solution at the valve and pipe midpoint, respec-
tively. The comparison demonstrates that the agreement between
experimental and numerical results is acceptable. The slight dis-
crepancy reported by other researchers (Wahba 2013; Tazraei and
Riasi 2015; Majd et al. 2016) can be due to experimental issues or
uncertainties associated with the input data to the transient model.

Comparison with the 2D Model
For the sake of verifying the proposed numerical solution scheme,
the 1D results are here compared with the 2D solutions known to be

L =36.09 m

Reservoir D = 0.025m

Fig. 1. Reservoir-pipe-valve system to run fluid transients tests.
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Fig. 3. Pressure time-history at the valve.
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Fig. 4. Pressure time-history at the midpoint of the pipeline.
Fig. 2. Convergence of pressure head at valve location and time section
a:t:L−1 ¼ 4.1 (t ¼ 0.1117) versus different computational mesh sizes.
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more accurate and acceptable (but harder to implement) (Wahba
2013; Tazraei and Riasi 2015; Majd et al. 2016). The input data,
boundary and initial conditions of both methods share identical
quantities so the results can be fairly compared. Specifically, with
using equivalent initial conditions, both methods arrive at identical
immediate pressure rise (Joukowsky’s pressure head) which then
allows for the assessment of non-Newtonian effects during transi-
ents. Fig. 5 presents the velocity profile at the steady state (initial
condition) the two methods employ for different power-law coef-
ficients. The results show that the proposed method computes the
average velocity based on this velocity profile to make use of the
developed formulations. During the transient phenomenon, the 2D
methods use various patterns for the velocity profile dictated by the
momentum equation in the radial direction (Wahba 2013; Majd
et al. 2016), whereas the proposed 1D method adopts a velocity
profile proportional to the one presented in Fig. 5. The computed
pressure heads of the two methods are provided for the valve
node (Fig. 6) and midpoint (Fig. 7). The results show that the esti-
mated pressure heads of the proposed method are relatively close to

those of the 2D method (Majd et al. 2016), so the effect of the
approximate computation of viscosity and shear stress on the fluid
pressure is small. These results imply that despite the simplicity of
the proposed method, this method can provide satisfactory results.

As illustrated in Figs. 6 and 7, in the non-Newtonian fluid flows,
the maximum pressure slightly reduces by decreasing the fluid vis-
cosity. Likewise, the rise of the line-packing effect due to the in-
creased shear-thinning property is observed in the results of the new
method, which is consistent with the literature. In contrast, decreas-
ing the viscosity of the fluid reduces the amount of pressure drop
across the pipe path, thus declining the line-packing effect.

To quantify the error between the two solutions, the following
metric is defined:

errorðtÞ ¼
�

h2DðtÞ − h1DðtÞ
Maxðh2D −H01Þ

�
× 100 ð24Þ

in which the subscripts 1D and 2D = present and Majd et al.’s
(2016) solution, respectively; H0 = steady-state pressure head;
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Steady State, n=0.6 (Present Study)
Steady State, n=0.6 (Tazraei and Riasi 2015)
Steady State, n=1 (Present Study)
Steady State, n=1 (Tazraei and Riasi 2015)

Fig. 5. Axial velocity profiles at the midpoint of pipeline in steady-state flow.
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Fig. 6. Pressure time-history at the valve for different power-law fluids.
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1 = column vector whose all elements are unity. The evaluated
error [using Eq. (24)] between the two sets of results are shown
in Fig. 8. The error quantities reveal that the difference between
the two methods is noticed only at the points of sharp pressure
change that essentially results from slight timing mismatch be-
tween the two computational methods. However, the results
show that the proposed method can favorably capture the non-
Newtonian effects, and overall, the method is reasonable for prac-
tical applications.

A similar comparison between the two methods is performed
in terms of the average cross-sectional velocity versus time
at the reservoir (Fig. 9) and midpoint (Fig. 10). The error estima-
tion presented in Fig. 11 shows the evaluated discrepancy of the
average velocity for the two methods. The results confirm that for
the Newtonian case (n ¼ 1), the 1D approach is satisfactory,
which agrees with the literature. As the shear-thinning effect in-
creases, the discrepancy starts to rise such that for n ¼ 0.6, the
highest mismatching is observed. Although the computed veloc-
ities are slightly overestimated, the timing of their variations dem-
onstrates reasonable agreement.

Variations of the Velocity Profiles during Transients in
the Non-Newtonian Fluid

Themain reason for the discrepancy between the 1D and 2D pressure
results is the approximate estimation of cross-sectional velocity pro-
files in the 1D scheme. To better illustrate this point, the variations
of theaxialvelocityalong the radialdirection (continuous line)com-
puted based on the 2D simulation (Majd et al. 2016) and the corre-
sponding mean velocity (dashed) and mean velocity of the 1D
solution (dotted) are compared in Figs. 12(a–f) for Newtonian
and Figs. 13(a–f) for power-law fluid with n ¼ 0.6. The figures dis-
play thevelocities at themidpointof thepipeline for t¼0 (a), t¼L=a
(b), t ¼ 2L=a (c), t ¼ 3L=a (d), t ¼ 4L=a (e), and t ¼ 5L=a (f).

Note that the proposed 1D simulation adopts the Hagen–
Poiseuille velocity profile, clearly differing from the velocity pro-
files of the 2D models (Martins et al. 2018; Majd et al. 2016).
However, the effects of the 2D behavior can be treated via the Zielke
formula, which is the basis of this 1D research (similar to what has
been performed for unsteady friction). Furthermore, the gradient of
the velocity profile is the main concern. More specifically, the dy-
namic viscosity (the fundamental variable) is estimated from the
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n=1 (Newtonian 2D, Majd et al. 2016)
n=0.6 (2D, Majd et al. 2016)
n=1 (Newtonian 1D)
n=0.6 (1D)

Fig. 7. Pressure time-history at the midpoint of the pipeline for various power-law fluids.

Fig. 8. Error of the computed pressure head between the present study: (a) the 2D solution of Majd et al. (2016) at the valve location; and (b) at the
midpoint of the pipeline.
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Fig. 9. History of the average velocity at the reservoir point (power-law).
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Fig. 10. History of average velocity at the midpoint of the pipeline (power-law).
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Fig. 11. Error of the computed velocity between the present study: (a) the 2D solution of Majd et al. (2016) at the valve location; and (b) at the
midpoint of the pipeline.
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gradient of Hagen–Poiseuille profile whose computation is based on
the mean velocity, which itself depends on the dynamic viscosity.
Thus, the dynamic viscosity and the gradient of the velocity profile
(near the wall) are updated via the explained iterative process.

Variations of the Dynamic Viscosity and Shear Stress

Some additional results are provided in this section to conceive the
significance of shear-thinning fluids in the wake of transient events.

In Newtonian fluids, the solution adopts a constant viscosity to be
used in Eq. (10), and based on which, the weight functions are com-
puted, then leading to the computation of velocity and pressure
head at the new time step. However, herein, the viscosity depends
on the mean velocity [Eq. (15)], which itself depends on the vis-
cosity due to Eq. (9). The proposed method therefore needs to solve
the nonlinear equations (e.g., by repetition between equations) to
converge to a viscosity, and hence, flow rate and pressure head.
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Fig. 12. Velocity profiles versus mean velocities of the 2D model (dashed) and those of the current model (dotted) at the pipe midpoint for n ¼ 1

(Newtonian): (a) t ¼ 0 (steady state); (b) t ¼ 1L=a; (c) t ¼ 2L=a; (d) t ¼ 3L=a; (e) t ¼ 4L=a; and (f) t ¼ 5L=a.
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Fig. 14 illustrates the variations of the viscosity with time at
the midpoint of the pipe for n ¼ 0.8 and 0.6. The type of non-
Newtonian fluid and the mean velocity primarily dictates the varia-
tion of viscosity. As seen in Fig. 14, the viscosity is higher when the
fluid flow accelerates or decelerates. It is customary that in 2D sim-
ulations, the viscosity is higher in the proximity of the pipe wall
(Majd et al. 2016) because of higher variations of velocity in that
region. Likewise, a large amount of change in velocity over time,
which corresponds to significant variations in space, is analogous

to the conditions in the region of the pipe wall neighborhood and
can produce considerable viscosity. A similar trend is also observed
for the variations of shear stress, as seen in Fig. 15.

Summary and Conclusions

The prediction of transient friction is an important concern,
allowing for the estimation of the damping of pressure histories.
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Fig. 13. Velocity profiles versus mean velocities of the 2D model (dashed) and those of the current model (dotted) at the pipe midpoint for n ¼ 0.6:
(a) t ¼ 0 (steady state); (b) t ¼ 1L=a; (c) t ¼ 2L=a; (d) t ¼ 3L=a; (e) t ¼ 4L=a; and (f) t ¼ 5L=a.

© ASCE 04020019-10 J. Pipeline Syst. Eng. Pract.

 J. Pipeline Syst. Eng. Pract., 2020, 11(3): 04020019 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

U
ni

ve
rs

ity
 o

f 
B

ir
m

in
gh

am
 o

n 
04

/1
0/

20
. C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.



For non-Newtonian fluids, the mathematical representation of the
friction term in the momentum equation consists of the shear rate
determined by the velocity profile at each cross section. As a result,
at least a 2D formulation of transient flow is required that includes
variations of velocity in the axial direction and also in the radial
direction. The 2D methods are not efficient and appropriate for
practical applications because they are computationally cumber-
some. To overcome the difficulties associated with the calculation
of the velocity profile, a 1D solution approach for non-Newtonian
fluids is proposed in this research based on Zielke’s model.

The Zielke model adopts a convolution integral of flow accel-
eration with weight functions to calculate the transient friction
term. In this approach, the required cross-sectional velocity gra-
dient of the power-law and Cross fluid in the transient state was
computed according to that of the steady-state flow. This is equiv-
alent to assuming the Hagen–Poiseuille velocity profile during the
unsteady flow. On this basis, the appropriate governing equations
were derived and were solved numerically using the MOC.

The proposed method did not consider the variations of the
velocity profile, and hence, it approximated the shear rate, wall
shear stress, and viscosity using the average velocity of flow. The
derivation of the viscosity in terms of the mean velocity was per-
formed for steady-state flow. Nevertheless, the viscosity was up-
dated at each time step iteratively based on flow variations. For the
sake of validation of the proposed method, the experimental and 2D

results were compared. Both comparisons presented in terms of
pressure head and mean velocity seemed reasonable.

The pressure histories of the non-Newtonian fluid hammer re-
vealed significant changes compared to Newtonian fluids. The pro-
posed 1D formulas and corresponding MOC solution, similar to the
2D models, could favorably capture the non-Newtonian effects.
The maximum error between the proposed and the 2D model was
less than two percent, which had a decreasing trend when the
power-law index approaches one (non-Newtonian fluids).

Appendix I. Shear Stress in Power-Law Fluids

The purpose of this appendix is to study the fully developed steady
flow in a pipe of radius R, as exhibited in Fig. 16. The steady flow is
due to the pressure difference across the two ends of the pipe. Since
there is no angular velocity and the flow is steady, the linear mo-
mentum balance (in the direction of flow, z) on a fluid element
ABCD of radius r and length L, may be written as

pðπr2Þ− ðpþΔpÞðπr2Þ ¼ τ rzð2πrLÞ or τ rz ¼
�
r
2

��
−Δp

L

�

ð25Þ
This shows the linear variation of the shear stress across the pipe

cross section, increasing from zero at the axis of the pipe to a maxi-
mum value at the wall of the pipe. It should be emphasized here that
Eq. (25) is applicable to both laminar and turbulent flow of any
incompressible fluid in steady, fully developed conditions since
it is based simply on a force balance and no assumption has been
made regarding either the type of fluid or the flow pattern. Eq. (25)
thus provides a convenient basis for determining the shear stress at
the wall of the pipe τw as

τw ¼
�
R
2

��
−Δp

L

�
ð26Þ

the shear stress may then be evaluated in terms of the shear rate at
the wall, γ̇w or ð−dVz=drÞw to yield steady shear stress–shear rate
data for a fluid. This relationship may be obtained, however, be-
cause the z-component of the velocity is a function only of the ra-
dial coordinate, i.e., VzðrÞ. The volumetric flow rate through the
annulus formed by two concentric fluid elements at radial positions
of r and ðrþ drÞ, as shown in Fig. 16(b). The volumetric flow rate
is given by

dQ ¼ 2πVzðrÞdr ð27Þ
for the sake of simplicity, VzðrÞ will now be written as Vz. The total
volumetric flow rate is obtained by integrating Eq. (27) over the
cross section of the pipe as
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Fig. 14. Dynamic viscosity during the transient flow at the midpoint of
the pipeline.
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Fig. 15. Nondimensional wall shear stress at the midpoint of the
pipeline.

Fig. 16. Schematics of flow in a pipe. (Reprinted from Non-Newtonian
Flow and Applied Rheology, R. P. Chhabra and J. F. Richardson, ©
2008, with permission from Elsevier.)
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Q ¼
Z

R

0

2πrVzdr ð28Þ

carrying out the integration in Eq. (28) by parts

Q ¼ 2π

��
r2

2
Vz

�
jR0 þ

Z
R

0

r2

2

�−dVz

dr

�
dr

�
ð29Þ

Considering the no-slip condition at the pipe wall, i.e., Vz ¼ 0 at
r ¼ R, the first term on the right-hand side of Eq. (29) vanishes at
both limits of integration. Therefore, Eq. (29) reduces to

Q ¼ π
Z

R

0

r2
�−dVz

dr

�
dr ð30Þ

For the laminar flow of time-independent fluids, the shear rate
ð−dVz=drÞ is determined only by the value of the shear stress,
i.e., the corresponding value of τ rz. Thus, without any loss of gen-
erality, it is convenient to write this functional relationship as

−dVz

dr
¼ fðτ rzÞ ð31Þ

where f is a function dependent on the specified fluid description.
The combination of Eqs. (25) and (26) yields

τ rz
τw

¼ r
R

ð32Þ

or in terms of derivatives (for constant values of R and τw)

dr ¼
�
R
τw

�
dτ rz ð33Þ

By substituting Eqs. (31) and (32) into Eq. (30), the discharge
rate Q is provided as

Q ¼ πR3

τ 3w

Z
τw

0

τ2rzfðτ rzÞdτ rz ð34Þ

in which, fðτ rzÞ ¼ γ̇. For instance, for a power-law model fluid

τ rz ¼ m

�−dVz

dr

�
n
¼ mðγ̇Þn ð35Þ

therefore, the discharge rate Q Eq. (34) is obtained

Q ¼ πR3

τ3w

Z
τw

0

τ2rz

�
τ rz
m

�
1=n

dτ rz ð36Þ

Appendix II. Relation between Shear Rate, Mean
Velocity, and Shear Stress

The Eq. (34) is a general formulation relating the shear stress to the
shear rate characteristics of a time-independent fluid dictated by the
rheological data of a specified fluid. Eq. (34) is rearranged as:�

Q
πR3

�
τ 3w ¼

Z
τw

0

τ2rzfðτ rzÞdτ rz ð37Þ

The right-hand side of Eq. (37) accounts for a definite integral;
hence, the final result depends only on the value of the wall shear
stress, τw, and not on the nature of the continuous function fðτ rzÞ.
As a consequence, one should only evaluate the wall shear stress τw
[Eq. (26)] and the corresponding shear rate at the wall ðdVz=drÞ at
r ¼ R, or simply fðτwÞ. The Leibnitz rule allows for the derivative
of a definite integral of the form ðd=ds 0Þf∫ s 0

0 s
2fðsÞdsg to be

written as ðs 0Þ2fðs 0Þ, where s is a dummy variable of integration
(τ rz here) and s 0 is naturally identified as τw. Applying the Leibnitz
rule to Eq. (37) when differentiated with respect to τw enables

d
dτw

��
Q
πR3

�
τ3w

�
¼ d

dτw

�Z
τw

0

τ2rzfðτ rzÞdτ rz
�

which further simplification gives

ð3τ 2wÞ
�

Q
πR3

�
þ τ3w

d
dτw

�
Q
πR3

�
¼ τ2wfðτwÞ ð38Þ

Eq. (38) can be rearranged as

fðτwÞ ¼ 3

�
Q
πR3

�
þ τw

d
dτw

�
Q
πR3

�
ð39Þ

The use is made of the relation d ln x ¼ x−1dx so that Eq. (39)
may be written as

fðτwÞ ¼
�
− dVz

dr

�
w
¼ 4Q

πR3

�
3

4
þ 1

4

d lnð 4QπR3Þ
d lnðτwÞ

�
ð40Þ

or, in terms of the mean velocity over the flow cross section,
Q ¼ VπR2, and pipe diameter D

�
− dVz

dr

�
w
¼

�
8V
D

��
3

4
þ 1

4

d lnð8VD Þ
d ln τw

�
ð41Þ

Eq. (41) may also be written as follows:

γ̇ ¼
�
8V
D

��
3ðd ln τwÞðd lnð8V=DÞÞ−1 þ 1

4ðd ln τwÞðd lnð8V=DÞÞ−1
�

ð42Þ

Appendix III. Derivation of Coefficients of
Characteristics Equations

The MOC allows for writing the momentum and continuity equa-
tions, as follows:

Cþ:
dQ
dt

þ gA
c
dH
dt

þ 1

2
AΔtλρ

jQAjQP

A2
þ 16υ

D2

XN
k¼1

YkðtÞ ¼ 0;

YkðtÞ ¼
XNUF

k¼1

mke
− 4ν

D2nkt
Z

t

0

e
4ν
D2nks

∂V
∂s ðsÞds ð43Þ

C−: dQ
dt

− gA
c
dH
dt

þ 1

2
AΔtλρ

jQBjQP

A2
þ 16υ

D2

XN
k¼1

YkðtÞ ¼ 0;

YkðtÞ ¼
XNUF

k¼1

mke
− 4ν

D2nkt
Z

t

0

e
4ν
D2nks

∂V
∂s ðsÞds ð44Þ

Here, Eq. (43) is valid on the path dz=dt ¼ a, and Eq. (44) is
valid on dz=dt ¼ −a. Note that the last terms of these equations
(unsteady friction terms) contain ∂Q=∂t, which requires the dis-
charge QP at the unknown time step nþ 1. The aim is to obtain
algebraic relations to approximate HP and QP unknowns at each
time and space step (subscripts A and B stand for the left and the
right node on the characteristic lines, respectively). Finite differ-
ence approximation of Eqs. (43) and (44) yields
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Cþ:QP −QA þ gA
a
ðHP −HAÞ þ

1

2
AΔtλρ

jQAjQP

A2
þ AΔt

16υ
D2

XN
k¼1

YkðtÞ ¼ 0 ð45Þ

C−:QP −QB − gA
a
ðHP −HBÞ þ

1

2
AΔtλρ

jQBjQP

A2
þ AΔt

16υ
D2

XN
k¼1

YkðtÞ ¼ 0 ð46Þ

Alternatively

Cþ:QP −QA þ gA
a
ðHP −HAÞ ¼ −AΔte1; e1 ¼

1

2
λρ

jQAjQP

A2
þ 16υ

D2

XN
k¼1

YkðtÞ; YkðtÞ ¼
XNUF

k¼1

mke
− 4ν

D2nkt
Z

t

0

e
4ν
D2nks

∂V
∂s ðsÞds ð47Þ

and

C−:QP −QB − gA
a
ðHP −HBÞ ¼ −AΔte2; e2 ¼

1

2
λρ

jQBjQP

A2
þ 16υ

D2

XN
k¼1

YkðtÞ; YkðtÞ ¼
XNUF

k¼1

mke
− 4ν

D2nkt
Z

t

0

e
4ν
D2nks

∂V
∂s ðsÞds ð48Þ

wheremk; nk = parameters of Trikha’s (1975) or Vardy et al.’s (1993) unsteady friction formulation. The last term of these equations contains
a convolution integral to be evaluated numerically. In fact, the term YðtÞ in Eqs. (47) and (48) is used to model unsteady friction. Considering
the weighting function given by Eq. (7), the UF convolution integrals are computed by (Keramat and Tijsseling 2012)

YkðtÞ ≔
Z

t

0

�XNUF

k¼1

mke
− 4υ

D2nkðt−sÞ ∂V∂s ðsÞ
�
ds ¼

XNUF

k¼1

mke
− 4υ

D2nkt
Z

t

0

e
4υ
D2nks

∂V
∂s ðsÞds ≔

XNUF

k¼1

YkðtÞ ð49Þ

The use of exponential weighting functions permits a recursive formula to evaluate the convolution integrals. To this aim, considering time
step Δt, Yk at the previous time step is

Ykðt −ΔtÞ ¼
Z

t−Δt

0

mke
−4υnk

D2 ðt−Δt−sÞ ∂V
∂s ðsÞds ¼ e

4υnk
D2 Δtmke

−4υnk
D2 t

Z
t−Δt

0

e
4υnk
D2 s

∂V
∂s ðsÞds ð50Þ

Accordingly, YðtÞ can be approximated as follows (Keramat and Tijsseling 2012):

YkðtÞ ¼
XNUF

k¼1

YkðtÞ ¼
XNUF

k¼1

mke
−4υnk

D2 t
�Z

t−Δt

0

e
4υnk
D2 s ∂V

∂s ðsÞdsþ
Z

t

t−Δt
e
4υnk
D2 s

∂V
∂s ðsÞds

�

¼
XNUF

k¼1

�
mke

−4υnk
D2 t

Z
t−Δt

0

e
4υnk
D2 s

∂V
∂s ðsÞds

�
þ
XNUF

k¼1

�
mke

−4υnk
D2 t

Z
t

t−Δt
e
4υnk
D2 s

∂V
∂s ðsÞds

�

¼
XNUF

k¼1

�
mke

−4υnk
D2 t

Z
t−Δt

0

e
4υnk
D2 s

∂V
∂s ðsÞds

�
þ
XNUF

k¼1

�
mke

−4υnk
D2 t

Z
t

t−Δt
e
4υnk
D2 s

∂V
∂s ðsÞds

�

≈XNUF

k¼1

e−
4υnk
D2 ΔtYkðt −ΔtÞ þ

XNUF

k¼1

mke
−4υnk

D2 te
4υnk
D2 tð½VðtÞ� − ½Vðt −ΔtÞ�Þ

¼
�XNUF

k¼1

mk

�
½VðtÞ� þ

XNUF

k¼1

�
e−

4υnk
D2 ΔtYkðt −ΔtÞ −mk½Vðt −ΔtÞ�

�

¼ QP

A

�XNUF

k¼1

mk

�
þ
XNUF

k¼1

�
e−

4υnk
D2 ΔtYkðt −ΔtÞ −mk

A
½Qðt −ΔtÞ�

�
ð51Þ

the result of Eq. (51) is substituted in Eq. (47) for Cþ

e1 ¼ λρ
jQAjQP

2A2
þ 16υ

D2

XNUF

k¼1

�
e−

4υΔt
D2 nkYkðt −ΔtÞ −mk

A
½Qðt −ΔtÞ�

�
þ 16υ
AD2

�
Σ
NUF

k¼1
mk

�
QP ð52Þ

In power-law fluids, kinematic viscosity (υ) in Eq. (52) depends on the velocity gradient ðdV=drÞ. Considering Eq. (11), kinematic
viscosity (υ) may be written as

υ ¼ μ
ρ
¼ 1

ρ
m

�
dV
dr

�
n−1

¼ 1

ρ
m

��
3nþ 1

4n

��
8

AD

��
n−1

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
L1

Qn−1
P ¼ L1Qn−1

P ð53Þ

in which, m = power-law consistency coefficient, and n = power-law index. By substituting Eq. (53) in Eq. (52) and after some simpli-
fications, the following relation is obtained:
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e1 ¼ e3QP;rþ1 þ e4 þ e5QP;rþ1 ð54Þ

e3 ¼ λρ
jQAj
2A2

;

e4 ¼
16L1ðQn−1

P;r Þ
D2

XNUF

k¼1

�
e−

4L1ðQn−1
P;r

ÞΔt

D2 nkYkðt−ΔtÞ−mk

A
½Qðt−ΔtÞ�

�
;

e5 ¼
16L1ðQn−1

P;r Þ
AD2

XNUF

k¼1

mk ð55Þ

in which subscript r = different iterations and QP;r for r ¼ 1
adapts Qðt −ΔtÞ. Substitution of Eq. (54) in Eq. (47) yields the
updated QP from Cþ (subscript r + 1 stands for the updated
quantities)

QP;rþ1 ¼ QA − gA
a
HP;rþ1 þ

gA
a
HA − AΔte3QP;rþ1

− AΔte4 − AΔte5QP;rþ1 ð56Þ

or

QP;rþ1 ¼ − B
1þ C 0

P2 þ C 00
P2

HP;rþ1 þ
QA þ BHA þ C 0

P1 þ C 00
P1

1þ C 0
P2 þ C 00

P2

ð57Þ

So that

Cþ:QP;rþ1 ¼ CP − CaþHP;rþ1;

CP ¼ QA þ BHA þ C 0
P1 þ C 00

P1

1þ C 0
P2 þ C 00

P2
;

Caþ ¼ B
1þ C 0

P2 þ C 00
P2

ð58Þ

Likewise, for the C− characteristics equation, we have

C−:QP;rþ1 ¼ CN þ Ca−HP;rþ1;

CN ¼ QB − BHB þ C 0
N1 þ C 00

N1

1þ C 0
N2 þ C 00

N2

;

Ca− ¼ B
1þ C 0

N2 þ C 00
N2

ð59Þ

The coefficients holding superscripts ′ and ″ refer to the steady-
state friction and the unsteady friction, respectively. The numerical
descriptions of each coefficient are presented in Table 1.

Data Availability Statement

All data, models, or code generated or used during the study are
available from the corresponding author by request.

Notation

The following symbols are used in this paper:
A = pipe’s internal cross-sectional area;
a = elastic wave speed;

C� = Vardy and Brown’s (1995) shear decay coefficient;
D = pipe diameter;
g = gravitational acceleration;
H = piezometric head;

k, n = two fitting parameters (Cross model);
L = pipe length;
m = power-law consistency coefficient;

mk, nk = parameters of Trikha’s (1975) or Vardy et al.’s (1993)
unsteady friction formulation;

n = power-law index;
Q = discharge rate;
R = Reynolds number;
R = pipe radius;
r = distance in the radial direction from the pipe axis;
t = time;
u = axial component of velocity;
V = average cross-sectional velocity;
Vz = axial (z-component) velocity;
V0 = initial velocity;
W = weighting function;
z = distance along the pipe centerline;

βs = quasi-steady friction;
βu = unsteady friction;
γ̇ = Shear rate;

Δt = time step;
Δz = space-step increment;
η = dynamic viscosity of non-Newtonian fluid;
η0 = limiting values of the apparent viscosity at low shear

rates;
η∞ = limiting values of the apparent viscosity high shear rates;
λ = Darcy–Weisbach friction coefficient;
μ = dynamic viscosity of the Newtonian fluid;
υ = kinematic viscosity;

τ rz = shear stress point value;
τw = shear stress at the wall;

τw;ss = quasi-steady shear stress at the wall; and
ρ = fluid density.
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