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Abstract Solar energy is one of the most important renewable energy sources. Assessing the area’s solar potential needs analyzed
information about the dataset of the measured global solar radiation (GSR). Researchers recently detected the high potential of
state-of-the-art artificial intelligence (AI) methods in successfully estimating the GSR. In this study, a novel hybrid AI-based tool
consisting of a least square support vector machine (LSSVM) integrated with improved simulated annealing (ISA) is proposed to
predict the GSR over the Ahvaz synoptic station located in the South-West of Iran. The potential of the proposed hybrid paradigm
so-called LSSVM-ISA was evaluated by using multivariate adaptive regression spline (MARS), generalization regression neural
network (GRNN), and multivariate linear regression with interactions (MLRI). For precise assessment of efficiency of the AI models,
various statistical metrics and validation methods were used to assess the precision of the developed models. A comparison of the
obtained results indicated that the LSSVM-ISA method performed better than the MARS, GRNN, and MLRI models. The achieved
RMSE values of the MARS, GRNN, and MLRI models were decreased by 9%, 16%, and 30% using the LSSVM-ISA model.
Finally, the results demonstrated that the LSSVM-ISA model could be successfully employed for accurately estimating GSR.

1 Introduction

Solar energy is the electromagnetic energy emitted from the sun. Solar radiation is referred to as global solar radiation (GSR) that is
the total of direct shortwave radiation received from the sun and diffuse sky radiation that has been scattered across the atmosphere [1].
The GSR data are essential for several theoretical and practical applications such as solar energy systems, architecture, agriculture,
meteorological, and climatological models [2]. Pyranometers use thermoelectric, photoelectric, pyroelectric, or bimetallic elements
as sensors to measure the global solar irradiance (radiant flux density/m2) at the meteorological stations [1]. However, the GSR
measurements are limited and only available at a few meteorological stations due to the high cost of solar measuring instruments,
the accurate equipment calibration, installation, and maintenance requirements [1, 3, 4]. Besides, the missing GSR data, incorrect
data, measurements in a short and discontinuous period are other problems at many stations [5, 6].

Therefore, these problems have resulted in the recommendations for alternative techniques to accurately determine the GSR,
including utilizing empirical, deterministic, and artificial intelligence (AI) methods [7, 8]. Recently, AI methods have been broadly
applied to predicting the GSR.

AI techniques that have been employed for estimating the GSR consist of artificial neural network (ANN) [9], radial basis function
(RBF) [10], genetic programming (GP) [11], adaptive neural fuzzy inference system (ANFIS), multiple layer perceptron (MLP),
multiple linear regression (MLR) [12], extreme learning machine (ELM) [13], support vector machine (SVM) [14], random forest
(RF) [15], extreme gradient boosting (XGB) [16], adaptive regression spline (MARS) [17], M5 model tree [18], logistic regression
(LR) [19], and least square support vector regression (LSSVM) [20]. These AI models have been developed for predicting GSR by
in the previous studies, which are explained below.

To estimate daily GSR at the Dezful station in Iran’s southern west, Behrang et al. (2010) used ANN and radial basis function
(RBF) approaches [21]. The input dataset was comprised of a variety of meteorological variables. As a consequence of their findings,
it was concluded that the input dataset should include five variables: average air temperature, daylight hours, relative humidity, wind
speed, and the day of the year. The genetic programming (GP) and simulated annealing (SA) models were used in a hybrid model
by Mostafavi et al. (2013) to estimate the GSR in Iran [22]. Using maximum and lowest air temperatures as input factors, they
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were able to accurately forecast the GSR. A fuzzy genetic (FG) model was developed by Kisi (2014) to forecast the SR in Turkey
[23]. The suggested model performed better than the MLP and ANFIS models in the testing phase and showed promising outcomes
compared to them. Multiple linear regression (MLR), the adaptive neuro-fuzzy inference (ANFIS), and four empirical equations
were all used by Hatice Citakoglu (2015) to make predictions about Turkish solar radiation (SR) [24]. Authors have shown that the
ANN technique performs better than the other empirical equations in predicting the SR.

Using the extreme learning machine (ELM), support vector machine (SVM), genetic programming (GP), and artificial neural
network (ANN) approach, Shamshirband et al. (2016) suggested estimating monthly GSR in Iran [25]. According to the authors,
the ELM technique outperforms the ANN, GP, and SVR models in terms of accuracy. A SVM model was used by Belaid and Mellit
(2016) to estimate the daily and monthly GSR in Ghardaïa (Algeria) [26]. According to their findings, the suggested SVM model
exhibited high accuracy when tested against the MLP. Using the random forest (RF) and the firefly algorithm (FA), Ibrahim and
Khatib (2017) developed a hybrid model for forecasting hourly GSR [27].

In another research, the models of extreme gradient boosting (XGB) and support vector regression (SVR) were compared with
empirical models for predicting daily GSR in another study conducted by Fan et al. (2018) [28]. Following the acquired findings,
the XGB and SVR were more exact than the empirical models. Using the MARS model created by Li et al. (2019), they compared it
to the analytic neural network (ANN) and logistic regression (LR) models [29]. The findings showed that the MARS approach was
superior to the ANN and LR methods in terms of accuracy. Introducing a dynamic ANFIS model, Kisi et al. (2019) evaluated the SR
model against MARS, M5 model trees, and least square support vector regression (LSSVM) [7]. The findings demonstrated that the
suggested strategy might outperform the MARS, M5 model tree, and LSSVR models when predicting the SR. Gürel et al. (2020)
compared the ability of the ANN method with empirical models, time series (holt-winters (HW)), and response surface methodology
(RSM) for modeling the GSR in Turkey [30]. Regarding the results, the ANN presented the best results compared to the other peers.
Fan et al. (2020) proposed three hybrid SVMs with bat algorithm (SVM-BAT), particle swarm optimization (SVM-PSO), and whale
optimization algorithm (SVM-WOA) for the prediction of daily diffuse solar radiation [31]. These methods were compared with
the SVM, MARS, and XGB methods. Their results indicated that the SVM-BAT could further enhance the prediction precision
in diffused solar radiation compared to the SVM, SVM-PSO, SVM-WOA, and EGB models. Alizamir et al. (2020) evaluated the
potential of six machine learning methods, MLP, gradient boosting tree (GBT), MARS, classification and regression tree (CART),
and ANFIS based on fuzzy c-means clustering (ANFIS-FCM) and subtractive clustering (ANFIS-SC) to estimate the SR from two
stations in Turkey and the USA [32]. The results indicated that the GBT method provided better accuracy in modeling the SR than
the MLP, MARS, ANFIS, and CART models.

Regarding the above literature on predicting the GSR using the AI methods, the motivation for exploring more accurate and
reliable AI methods is still a challenging task. Among different AI methods, the LSSVM methods are one of the robust and reliable
AI methods that have a promising predictive ability. Generally, AI models, especially the LSSVM model, are susceptible to their
setting parameters, so incorrect selection yields an optimal local solution. To address this, combining AI models with meta-heuristic
algorithms can be a suitable approach to succeed. Hence, this paper introduces a new hybrid of the LSSVM with an improved version
of the SA (ISA) method to optimize the control parameters of the LSSVM. For evaluation purposes, the LSSVM-ISA model was
compared with several AI models on the GSR modeling, including generalization regression neural network (GRNN), multivariate
linear regression with interactions (MLRI), MARS, and empirical equations.

The rest of this study is described as follows. Section 2 expresses the materials and methods, including empirical models, the
dataset used in this paper, the procedure for data quality control, the introduction of the hybrid SA and the LSSVM model. It also
provides a summary of other AI models employed in this study (i.e., MARS, GRNN, and MLRI). The results are discussed in Sect. 3.
Validation of the proposed model with traditional approaches is presented in Sect. 4. Uncertainty analysis is implemented in Sect. 5.
Finally, the study conclusions are expressed in Sect. 6.

2 Materials and methods

2.1 Empirical models to estimate global solar radiation

Numerous empirical models have been developed to estimate the GSR based on meteorological variables such as minimum daily
temperature, maximum daily temperature, monthly temperature, sunshine hour, extraterrestrial radiation, relative humidity, albedo,
precipitation, cloudiness, and evaporation. [33, 34]. The important empirical models and their equations forms are illustrated in
Table 1. Some of these models were modified to solve the problem of the availability of meteorological data by researchers.

2.2 Study area and data processing

The current study focuses on global solar radiation assessment at Ahvaz city. The meteorological data collected from Ahvaz synoptic
station belong to the IR of Iran Meteorological Organization (IRIMO), over historical data of 10 years (1 July 2009–1 July 2019).
Ahwaz station is located in the Khuzestan province in the southwest of Iran with latitude 31 20 N, longitude 48 40 E, and elevation
22.5 m (Fig. 1). Ahwaz has a hot semi-arid climate with hot and long summers and moderate and short winters. This region’s annual
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Table 1 The most cited empirical models for predicting global solar radiation

Model Equation Empirical coefficient (Parameter) Source

Angstrom and Prescott Rs � (
a + b

( n
N

))
Ra a, b [36]

Swartman and Ogunlade Rs � a + b
( n
N

)
+ c · RH a, b, c [37]

Hargreaves Rs � a
√

(Tmax − Tmin) · Ra a [38]

Bristow and Campbell Rs � a
(
1 − exp

(−b(Tmax − Tmin)c
))
Ra a, b, c [39]

De Jong and Stewart Rs � a(Tmax − Tmin)b ·
(

1 + cP + dP2
)
Ra [40]

Allen Rs � a
(√

Tmax − Tmin
)
Ra [41]

Donatelli and Campbell Rs � a
(

1 − exp
(
−b · (Tmax−Tmin)c

(Tmonth)

))
Ra a, b, c [42]

Hunt Rs � a
√

(Tmax − Tmin) · Ra + b a, b [43]

Hunt Rs � a
√

(Tmax − Tmin) · Ra + bTmax + cP + dP2 + e a, b, c, d, e [43]

Goodin, Hutchinson, Vanderlip, and Knapp Rs � a
(

1 − exp
(
−b. (Tmax−Tmin)c

(Ra )

))
Ra a, b, c [44]

Elagib and Mansell Rs � a
(
exp

(
b · ( n

N

)))
Ra a, b, c [45]

Chen, Ersi, Yang, Lu, and Zhao Rs � (
a · ln(Tmax − Tmin) + b · ( n

N

)c + d
)
Ra a, b, d [46]

where Rs is the global solar radiation (MJ /m2/day); Ra extraterrestrial radiation (MJ /m2/day); n the actual duration of sunshine (hr); N maximum possible
duration of sunshine or daylight hours (hr); n/N relative sunshine duration; Tmin minimum daily air temperature (°C); Tmax maximum daily air temperature
(°C); TMonth mean air temperature of the month (°C); RH the relative humidity (%); and P daily precipitation (mm)

Table 2 Descriptive statistics of meteorological variables and global solar radiation data for the Ahvaz stations located in Iran

Variables Day Sh (h) Tave (oC) Ws(m/s) Rh (%) GSR(kWh/m2/day)

Minimum 1 0 3.64 0.85 4.96 0.21

Maximum 366 13 44.55 11.82 88.97 8.49

Range 365 13 40.91 10.97 84.01 8.28

Mean 183.1 8.602 26.79 3.594 30.03 5.397

Std. Deviation 105.4 3.442 10.25 1.351 19.41 1.918

Skewness 2.109E-05 − 1.194 − 0.1415 0.890 0.743 − 0.404

Kurtosis − 1.2 0.434 − 1.337 1.124 − 0.5069 − 0.889

Correlation with GSR − 0.064 0.772 0.786 0.236 − 0.784 1.000

mean, maximum, and minimum air temperatures are 26.3, 33.4, and 19.2 °C, respectively. The annual mean precipitation is 202 mm,
and the annual mean relative humidity is 43.3% [35]. The collected meteorological data included the average daily temperature
(T ave, °C), sunshine hours (Sh, hr), relative humidity (Rh, %), average wind velocity (W s, m/s) at 10 m and day of the year in the
range of [1 366]. These data were used as input values to estimate the AI-based models’ predictive daily global solar radiation (GSR,
kWh/m2/day). The predictor time series and observed values of GSR were shown in 10 years (3653 days) in Fig. 2. Moreover, Table
2 summarizes the descriptive statistics of the input time series for ten years.

The histogram of the frequency related to all the time series variables and the probability density function of the normal distribution
are illustrated in Fig. 3. According to Fig. 3 and Table 1, the mean daily sunshine hours and average daily temperature dataset have
the highest skewness and kurtosis, respectively. However, corresponding to [47], the skewness and kurtosis values for the range
of [− 1.96 + 1.96] are acceptable to prove normal univariate distribution. Also, a visual correlation matrix between the predictor
variables (Day, Sh, T ave, W s, and Rh) and the target variable (GSR) for Ahwaz synoptic station was indicated to survey the degree
of influence of predictive parameters on GSR in Fig. 4.

According to the correlation analysis based on the Pearson correlation coefficient [48], it seems the average daily temperature
(T ave) and relative humidity (Rh). Daily sunshine hours (Sh) due to having the highest Pearson correlation (rp � 0.79, −0.78, and
0.77, respectively) with the target are a more significant element in GSR estimating, whereas the day and mean wind velocity (W s)
by yielding the lowest magnitude of the correlation (rp � −0.06 and 0.24, respectively) play a weaker role in daily GSR estimating
process. However, a certain degree of the above analysis depends on the predictive variables’ nonlinearity dependence with the
objective parameter.

There is one ‘thumb of rule’ for data partitioning, and the researcher utilized different divisions between training and testing
datasets, which has influenced the results of problems [49]. In this research, the daily time series from 01 July 2009 to 1 July 2019
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Fig. 1 Study area: location of
Ahvaz synoptic station

were split into 80% (01 July 2009 to 1 July 2017) for the training dataset and 20% (02 July 2017 to 1 July 2019) as the test set.
Furthermore, all the datasets were normalized between zero and one range based on Eq. 1:

xnor � x − xmin

xmax − xmin
(1)

where x is the original variable value, xnor is the normalized value, and xmax and xmin are the maximum and minimum of the variable
(x), respectively.

2.3 The methodology of predictive models

2.3.1 Improved simulated annealing

Kirkpatrick et al. [50] introduced the simulated annealing (SA) as a single-based optimizer. The annealing process inspired this
algorithm in metallurgy. SA has two main phases: heating and cooling. The proposed method employs a temperature factor (t) to
transition from heating to cooling. Although the SA is a powerful optimizer, it may be stuck in the local solutions because it is
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Fig. 2 The measured predictive
and output variable over 10 years
(1 July 2009–1 July 2019) at
Ahvaz synoptic station

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200 3400 3600 3800
0
5

10
15
20
25
30
35
40
45

Days(1 July 2009-1 july 2019)

D
ai

ly
m

ea
n

te
m

pe
ra

tu
r e

(o C)

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200 3400 3600 3800
0
2
4
6
8

10
12
14

Days(1 July 2009-1 july 2019)
D

ai
ly

Su
ns

hi
ne

ho
ur

s(
h)

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200 3400 3600 3800
0

2

4

6

8

10

12

Days(1 July 2009-1 july 2019)

D
ai

ly
m

ea
n

W
in

d
ve

lo
ci

ty
(m

/s
)

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200 3400 3600 3800
0

10
20
30
40
50
60
70
80
90

Days(1 July 2009-1 july 2019)

D
ai

ly
m

ea
n

re
la

tiv
e

hu
m

id
ity

(%
)

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200 3400 3600 3800
0
1
2
3
4
5
6
7
8
9

Days(1 July 2009-1 july 2019)

Da
ily

GS
R

(k
W

h/
m

2 /d
ay

)

susceptible to the initial solutions [51]. An improved version of the SA algorithm is used to alleviate this shortcoming, which is
called the ISA in this study. The proposed algorithm can be defined in the following stages:

Stage 1: Initialization: Produce an initial random solution (S0). Specify the minimum and maximum temperature (tmin and tmax)
and the total number of iterations (MaxIt). Set t � tmax and Sbest � S0 (where xbest is the best-so-far solutions). The objective
function of xbest is Z∗ (Z∗ � Z (Sbest)).

Stage 2: Main loop: In this step, the local search of the SA is defined. Also, two adaptive parameters ρ and T are formulated.
The parameter ρ is a scale factor and sets how the position of solutions changes. The t parameter is updated in each iteration and is
a termination condition for determining the end of a local search operation.

While t > tmin

for it � 1 to MaxIt.
1. Produce the new solution uit,i :

uit,i � Sit,i + μ × (
Smax,i − Smin,i

) × rand n (2)
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Fig. 3 The histogram of the frequency and probability density function of the predictive and objective variable

where i is a randomly chosen integer value from [1, D]. Smin and Smax are the lower and upper bounds of the problem. randn is
a random normal distribution number and the (average � 0) and (standard deviation � 1). μ is an adaptive factor which decreased
by the equation μ � μ0 × exp(−a). Based on [51], a � 1.01 and the initial value of μ0 is 1.

(b) Check constraints on the solution uit ,i :

uit,i �
⎧
⎨

⎩

Smin +
(
uit,i − Smax

)
if uit,i > Smax

Smax +
(
Smin − uit,i

)
if uit,i < Smin

uit,i if Smin ≤ uit,i ≤ Smax

(3)

2. Determine the �Z∗ � Z
(
uit,i

) − Z∗ and �Z � Z
(
uit,i

) − Z
(
Sit,i

)
.

3. If �Z∗ ≤ 0, set Sbest � uit,i , Z∗ � Z (Sbest).
4. If �Z ≤ 0, set Sit+1 � uit,i .
5. If �Z > 0, update the Si with the solution u with probability exp(−�Z

T ).
end for
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Fig. 4 The correlation matrix of
the implemented variables

Fig. 5 Flowchart of the ISA algorithm

Decrease the T utilizing the following equation,

t � β×tmax (4)

end
Stage 3: Presentation of the best solution Sbest.
It is noteworthy that in Eq. (4), β is a constant number in the range of (0.5, 1). The flowchart of the ISA algorithm is displayed

in Fig. 5.
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2.3.2 Least square support vector machine (LSSVM)

The LSSVM is a different version of the support vector machine (SVM), which was presented by Suykens and Vandewalle [20].
The LSSVM employs a set of linear equations to increase its convergence speed, while the SVM uses a quadratic programming
technique for training [52]. The simple structure and high speed of LSSVM convergence make it widely used in regression and
classification fields [52, 53]. In this model, the training dataset is described by (xm , ym), m � 1, 2, …, M, where xn and ym are the
input and output dataset. The main formulation of the LSSVM is expressed as [54]:

Minimizeω,c,η Z (ω, η) � 1

2
ωTω +

1

2
γ

M∑

n�1

η2
n (5)

Subjectto :

ym � ωTφ(xm) + c + ηm,m � 1,2, . . . ,M (6)

where ωT is the vector of the transposed output layer, γ is a penalty parameter, η is a regression error, φ(xm) is a nonlinear function,
and c is a bias parameter to be estimated. Using the Lagrange method, Eqs. (5) and (6) can be defined as,

L(ω, c, η, α) � Z

(

ω, η) −
M∑

m�1

αm(ωTφ(xm) + c + ηm − ym

)

(7)

where αm is Lagrange multiplier. Based on the Karush–Kuhn–Tucker (KKT) conditions, the following solutions are achieved:

∂L

∂ω
� 0 → ω �

M∑

m�1

αmφ(xm) (8)

∂L

∂c
� 0 →

M∑

m�1

αm � 0 (9)

∂L

∂ηm
� 0 → αm � γ ηm (10)

∂L

∂αm
� 0 → ωTφ(xm) + c + ηm − ym � 0 (11)

By eliminating ω and ηm , the following equations can be obtained,
[

0 eTm
em Kernel + γ −1e

][
c
α

]
�

[
0
y

]
(12)

where em � [1, . . . , 1]T , α � [α1, . . . , αm]T , y � [y1, . . . , ym]T , and e is the unit matrix. Kernel is the kernel functions, which
is expressed as,

K (xm, xi ) � φ(xm)φ(xi ) (13)

Radial basis functions (RBF) are used as the kernel function in this research, which is defined as:

K (xm ,xi ) � exp

(−||xm, xi ||
δ2

)
(14)

where δ is a constant parameter, which is determined by the ISA algorithm.
In this paper, the ISA algorithm was employed to optimize the LSSVM parameters (i.e., δ and γ ). The proposed method is called

LSSVM-ISA. Figure 6 demonstrates the flowchart of the LSSVM-ISA algorithm. The mathematical formulation and details of the
MARS, MLRI, and GRNN models are available in Appendix 1. Also, the formulations of statistical metrics used in this study are
provided in Appendix 2. Figure 7 illustrates the flowchart of the proposed procedure and a brief algorithm of each data-driven
approach used in the daily GSR estimating process.

3 Result and discussion

For the development of predictive models, the employed influential input parameters at Ahvaz station include the day of the year
[1 365] (366 for leap year), daily sunshine hours (Sh), mean daily air temperature (T ave), mean daily wind velocity (W s), daily
relative humidity (Rh), and the daily global solar radiation (GSR) was considered as subjective models. In this study, a novel robust
data-driven model, namely the LSSVM, together with improved simulated annealing (ISA) approach (LSSVM-ISA), is provided
to predict the global solar radiation (GSR) accurately. Three other AI-based models validate the proposed method, namely MARS,
GRNN, and MLRI.
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Fig. 6 Flowchart of the
LSSVM-ISA method

To measure the best combination of predictor variables, a combination consisting of all influential variables and five combinations
obtained by successively excluding the influence of each predictor were examined for each predictive model by four metrics consisting
of the R, RMSE, MAPE, and NS. The best possible accuracy of the estimated datasets could be achieved when R � 1, RMSE �
0, MAPE < 10%, and NS � 1. According to the results of the first six combinations, the day and daily sunshine hours were
utilized continuously for constructing other combinations due to having a significant impact on the results. According to the above
explanations, a total of 10 combinations were examined for each data-driven model.

Exploration of the results of the ten combinations is tabulated in Table 3. As tabulated in Table 3, we can recognize that the
LSSVM-ISA model with the combination of four factors consisting of day, Sh, Tave, and Rh has revealed the best performance
in estimating the daily GSR with the highest R (0.973 and 0.980) and NS (0.947 and 0.957), and lowest RMSE (0.442 and 0.391
kWh/m2/day) and MAPE (8.171% and 8.233%) for training and testing modes.

Besides, the implemented kernel functions in LSSVM-ISA consisting of two tuning parameters (λ, σ ) are optimized for each
combination by improved simulated annealing (ISA), which are tabulated in Table 4. An open MATLAB toolbox ARESLab was
utilized to develop the MARS model in the current work. To verify the robustness and efficiency of the MARS performance model,
tenfold cross-validation was considered. The maximum number of basis functions in the forward building stage was selected between
15 and 30 numbers by a trial-and-error procedure to provide the MARS model. After the backward step and removing the over-fitting
model, some of the basis functions were eliminated. Table 5 shows the adjustment parameters of the MARS model.

Likewise, Table 6 sums the results achieved from the MARS model, which showed that the combination of 7 comprising day,
Sh, and Rh outperformed the other combinations in terms of R (0.968 and 0.974), RMSE (0.485 and 0.426 kWh/m2/day), MAPE
(9.596% and 9.003%), and NS (0.937 and 0.948) for training and testing modes, respectively.

The corresponding basis functions BF,i and the coefficients βi of the MARS model for the optimum combination (No.7) are
listed in Table 7.
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Fig. 7 The flowchart of
data-driven models to estimate the
daily GSR
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In the GRNN model, the most significant criterion is the spread values obtained by a trial-and-error process for each combination.
The spread values for each combination are summarized in Table 8. The statistical metrics obtained from the GRNN model to predict
the daily GSR are tabulated in Table 9. In the GRNN model, the combination (No.10) including day and Sh provided more precise
results in terms of R (0.964 and 0.971) and RMSE (0.526 and 0.469 kWh/m2/day), MAPE (11.042% and 11.384%), and NS (0.926
and 0.938) in training and testing phases, respectively, than the other combinations in assessing the daily GSR.

In the last alternative, the MLRI model is surveyed in both training and testing procedures based on the correlation (R), RMSE,
MAPE, and Nash–Sutcliffe efficiency (NS) for ten input combinations. As mentioned before, in the MLRI method, the relevant
analysis of variance (ANOVA) is performed for each combination based on the number of predictor parameters and how they interact.
Assessments of 10 combination schemes are given in Table 10. The statistical analysis demonstrates that in the MLRI model, the
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Table 3 Performance of the
estimating skills of the
LSSVM-ISA model with various
input variables over the training
and testing phase

Model Inputs Train Test

R RMSE MAPE% NS R RMSE MAPE% NS

1 All 0.973 0.446 8.246 0.946 0.978 0.399 8.429 0.955

2 All-day 0.940 0.659 12.639 0.883 0.935 0.687 14.055 0.866

3 All-Sh 0.930 0.710 14.481 0.864 0.935 0.672 14.687 0.872

4 All-T 0.973 0.445 8.194 0.947 0.978 0.414 8.466 0.951

5 All-Ws 0.973 0.442 8.171 0.947 0.980 0.391 8.233 0.957

6 All-Rh 0.971 0.464 8.621 0.942 0.976 0.421 9.103 0.950

7 All-T-Ws 0.975 0.431 7.942 0.950 0.977 0.420 8.682 0.950

8 All-T-Rh 0.971 0.458 8.493 0.944 0.974 0.445 9.435 0.944

9 All-Ws-Rh 0.972 0.449 8.311 0.946 0.976 0.425 9.085 0.949

10 All-Ws-Rh-T 0.972 0.453 8.647 0.945 0.976 0.431 9.381 0.947

Optimum All-Ws 0.973 0.442 8.171 0.947 0.980 0.391 8.233 0.957

Table 4 The tuning parameters of
LSSVM for each combination

Model Inputs LSSVM-ISA

σ γ

1 All 25.459 577.538

2 All-day 1.523 2.700

3 All-Sh 2.993 4.819

4 All-T 8.697 272.880

5 All-Ws 4.579 16.475

6 All-Rh 8.243 68.488

7 All-T-Ws 0.995 4.497

8 All-T-Rh 1.574 9.171

9 All-Ws-Rh 1.173 6.998

10 All-Ws-Rh-T 0.227 1.025σ � kernel width; γ �
loss-function parameter

Table 5 Setting parameter of the
MARS model for estimating GSR

Parameter Value

Maximum basis functions 15–30

Maximum self-interactions 0

Maximum degree of interactions 2–3

Threshold 0

Prune Yes

combination (No.6) consists of all predictors excluding the relative humidity (Rh) achieved the best prediction by the highest R
(0.945 and 0.958) and NS (0.892 and 0.902) in training and testing stages, respectively. The ANOVA associated with the optimum
combination (No. 6) is given in Table 11, which reveals that the term (Day × Ws) regarding p-value and F-value is less effective
than other terms and can be eliminated from the estimating process of daily GSR. Similarly, while the concept of this model is
based on the linear dependence between predictors and target, the average daily temperature (T ave) and sunshine hours (Sh) with the
highest Pearson correlation coefficients (rp � 0.79 and 0.77, respectively) have the most influence on obtained correlation as below
equation:

GSR � − 2.1812 + 0.0053131Day + 0.36946Sh + 0.25816Tave + 0.090826Ws

− 0.0002626Day × Sh − 0.00039114Day × Tave − 0.0049445Sh × Tave−0.00017948Day × Ws

+0.022838Sh × Ws−0.0072242Tave × Ws (15)

Table 12 summarizes the best performance of each data-driven model among all input combinations, which demonstrated that
the LSSVM-ISA outperformed the MARS, GRNN, and MLRI in estimating daily GSR in both the testing and training stage. Also,
MARS and GRNN are the second and third predictive models for simulating daily GSR, respectively.

The results in Tables 3, 6, 9, and 10 indicate that the optimal input combination in each data-driven model is different due to the
discrepancy in the performance mechanism of each of them. Figure 8 illustrates the bar plot of R, RMSE, MAPE, and NS values for
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Table 6 Performance of the
estimating skills of the MARS
model with various input variables
over the training and testing phase

Model Inputs Train Test

R RMSE MAPE% NS R RMSE MAPE% NS

1 All 0.968 0.487 9.480 0.936 0.973 0.433 9.409 0.947

2 All-day 0.928 0.717 14.118 0.862 0.930 0.692 14.109 0.864

3 All-Sh 0.920 0.754 15.908 0.847 0.930 0.691 15.011 0.865

4 All-Tave 0.968 0.485 9.596 0.937 0.974 0.426 9.003 0.948

5 All-W s 0.968 0.487 9.490 0.936 0.973 0.433 9.409 0.947

6 All-Rh 0.967 0.489 9.563 0.936 0.972 0.444 9.916 0.944

7 All- Tave -W s 0.968 0.485 9.596 0.937 0.974 0.426 9.003 0.948

8 All- Tave -Rh 0.968 0.485 9.505 0.937 0.972 0.444 9.923 0.944

9 All-W s-Rh 0.967 0.489 9.563 0.936 0.972 0.444 9.916 0.944

10 All-W s-Rh- Tave 0.968 0.485 9.505 0.937 0.972 0.444 9.923 0.944

Optimum All- Tave -W s 0.968 0.485 9.596 0.937 0.974 0.426 9.003 0.948

Table 7 Basis functions and
coefficients were obtained to
estimate the daily GSR in the
optimum combination (day, Sh,
Rh) using the MARS model

Basic function Equation Coefficient βi

Intercept – 8.3675
B1(x) BF1 � max(0, Day - 181) − 0.028177
B2(x) BF2 = max(0, 181 − Day) − 0.023802
B3(x) BF3 = max(0, Sh − 10.8) − 0.36892
B4(x) BF4 = max(0, 10.8 − Sh ) − 0.78284
B5(x) BF5�BF2 × max(0, Rh − 31.23) − 3.8718E-05
B6(x) BF6 � BF2 × max(0, 31.23 − Rh) 0.00022022
B7(x) BF7�BF4 × max(0, Rh − 25.41) − 0.0014453
B8(x) BF8 � BF4 × max(0, 25.41 − Rh) 0.0086739
B9(x) BF9�BF4 × max(0, 317 - Day) 0.0026546
B10(x) BF10 � BF3 × max(0, Day − 196) 0.014655
B11(x) BF11 � BF3 × max(0, 196 − Day) 0.0079019
B12(x) BF12 � BF4 × max(0, Day − 133) 0.0030269
B13(x) BF13 � BF4 × max(0, 133 − Day) − 0.0017473

Table 8 The spread values of GRNN for each combination

Inputs combination All All-day All-Sh All-T All-Ws

Spread value 0.1 0.05 0.05 0.05 0.05

Inputs combination All-Rh All-T-Ws All-T-Rh All-Ws-Rh All-Ws-Rh-T

Spread value 0.05 0.05 0.05 0.05 0.05

all input combinations and provided models. Based on the shown metric values in Fig. 8, the LSSVM-ISA has the best predictive
performance in all combinations, whereas the MARS and GRNN models are ranked as the best second and third predictive models,
respectively. However, MARS and GRNN in the combination No. 2 have similar performance in estimating the daily GSR. It can
be mentioned that MLRI cannot perform better than the last model in terms of the accuracy of all the proposed data-driven models.

The performances of the LSSVM-ISA, MARS, GRNN, and MLRI models were compared by the daily observed and simulated
GSR plots over the training and testing periods (Figs. 9, 10, 11, and 12). As can be seen in these figures, the GSR values predicted
by the LSSVM-ISA model are better with the observed data than those of MARS, GRNN, and MLRI models in both testing and
training stages. Moreover, the scatter plot of the GSR data points simulated by the LSSVM-ISA model is closer to the 1:1 line than
those from the other developed data-driven models, which implies the LSSVM-ISA model’s superiority in estimating daily GSR.
Moreover, a closer look at the distribution of points at scatter plots reveals that for the range of GSR > 4, all provided AI-based
models have promising performance in the simulation of daily GSR, especially in testing mode.

For visual comparison between the results of the LSSVM-ISA and those of other data-driven approaches, Fig. 13 shows estimated
and observed GSR values over the two selected intervals of (1 June 2013–31 December 2013) and (1 January 2017–1 July 2019) at
the training and testing periods, respectively. It can be seen that the LSSVM-ISA performs better than other predictive models due to
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Table 9 Performance of the
estimating skills of the GRNN
model with various input variables
over the training and testing phase

Model Inputs Train Test

R RMSE MAPE% NS R RMSE MAPE% NS

1 All 0.974 0.436 8.652 0.949 0.967 0.495 10.792 0.931

2 All-day 0.967 0.494 8.543 0.934 0.927 0.724 14.443 0.851

3 All-Sh 0.948 0.615 11.790 0.898 0.917 0.752 16.142 0.840

4 All-T 0.990 0.275 4.992 0.980 0.967 0.484 9.781 0.933

5 All-Ws 0.985 0.329 6.001 0.971 0.970 0.471 9.740 0.937

6 All-Rh 0.986 0.322 6.116 0.972 0.970 0.474 10.239 0.936

7 All-T-Ws 0.965 0.511 10.518 0.930 0.966 0.488 10.714 0.933

8 All-T-Rh 0.966 0.515 10.832 0.929 0.970 0.477 11.384 0.935

9 All-Ws-Rh 0.965 0.510 10.338 0.930 0.970 0.481 11.289 0.934

10 All-Ws-Rh-T 0.964 0.526 11.042 0.926 0.971 0.469 11.384 0.938

Optimum All-Ws-Rh-T 0.964 0.526 11.042 0.926 0.971 0.469 11.384 0.938

Table 10 Performance of the
estimating skills of MLRI model
with various input variables over
the training and testing phase

Model Inputs Train Test

R RMSE MAPE% NS R RMSE MAPE% NS

1 All 0.949 0.612 11.231 0.899 0.956 0.584 11.567 0.903

2 All-day 0.911 0.796 15.209 0.829 0.919 0.772 15.525 0.831

3 All-Sh 0.883 0.918 19.692 0.773 0.883 0.902 19.784 0.769

4 All-T 0.901 0.841 15.087 0.810 0.899 0.849 15.360 0.796

5 All-Ws 0.947 0.625 11.435 0.895 0.955 0.599 12.080 0.898

6 All-Rh 0.945 0.634 11.585 0.892 0.958 0.587 12.706 0.902

7 All-T-Ws 0.896 0.861 15.323 0.801 0.895 0.867 15.417 0.787

8 All-T-Rh 0.800 1.163 21.328 0.636 0.847 1.016 21.315 0.707

9 All-Ws-Rh 0.943 0.642 11.735 0.889 0.957 0.596 12.794 0.899

10 All-Ws-Rh-T 0.771 1.234 22.510 0.590 0.834 1.043 21.313 0.691

Optimum All-Rh 0.945 0.634 11.585 0.892 0.958 0.587 12.706 0.902

Table 11 ANOVA results identify
the influence of predictor’s
interaction in the MLRI model for
the combination No.6

Terms Sum of squares F-value p-value

Day 535.37 2572.2 0
Sh 2222.6 10,672 0
Tave 2616.2 12,561 0
Ws 6.635 31.858 1.818E-08
Day × Sh 21.044 101.04 2.16E-23
Day × Tave 234.15 1124.2 0
Tave × Sh 50.380 241.92 0
Day × Ws 1.244 5.972 0.0146
Ws × Sh 23.347 112.10 0
Ws × Tave 13.397 64.321 1.510E-15

Table 12 Comparison between
the outcomes from 4 data-driven
models to estimate daily GSR

Model Optimum
combination

Train Test

R RMSE MAPE% NS R RMSE MAPE% NS

LSSVM-ISA All-Ws 0.973 0.442 8.171 0.947 0.980 0.391 8.233 0.957

MARS All-T-Ws 0.968 0.485 9.596 0.069 0.974 0.426 9.003 0.056

GRNN All-Ws-Rh-T 0.964 0.526 11.042 0.926 0.971 0.469 11.384 0.938

MLRI All-Rh 0.945 0.634 11.585 0.892 0.958 0.587 12.706 0.902
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Fig. 8 The correlation (R),
RMSE, MAPE, and NS values for
all AI models in 10 combinations
versus predictors number
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having the best fit and lowest overestimation and underestimation. However, as the next alternatives, the MARS and GRNN models
can simulate the daily GSR at an acceptable level of precision. The violin plot in Fig. 14 shows the distribution of standardized
observed and estimating daily global solar radiation (GSR) using the LSSVM-ISA, MARS, GRNN, and MLRI models for testing
and training modes in both testing and training modes of the best input combinations. Distribution of predicted GSR values in
violin plot for training (Fig. 14A) and testing (Fig. 14B) stages reveals that all predictive models have relatively similar estimating
performance in the median 50 percentile (thick solid line). In contrast, the LSSVM-ISA model is energetically superior to other
data-driven models in upper and lower quartiles (dashed lined) of violin plots compared to observational daily GSR. Also, the MARS
model with the second-best distribution consistency with observational values has acceptable performance in estimating daily GSR.

In the next validation graphical tools, the Taylor diagrams for evaluating the robustness of the developed predictive models in
training and testing period of the simulation are plotted in Fig. 15. According to findings in Fig. 15, the locus of data obtained
from the LSSVM-ISA model is in the closet distance to the target point compared to those of the other data-driven methods in both
training and testing phases. This fact is due to having the highest correlation coefficients (R � 0.974 and 0.980), and the minimal
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Fig. 9 The scatter plots of GSR (right); comparison of the measured and predicted GSR (left) using of LSSVM-ISA model for both training and testing
datasets
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Fig. 10 The scatter plots of GSR (right); comparison of the measured and predicted GSR (left) using of MARS model for both training and testing datasets
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Fig. 11 The scatter plots of GSR (right); comparison of the measured and predicted GSR (left) using of GRNN model for both training and testing datasets
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Fig. 12 The scatter plots of GSR (right); comparison of the measured and predicted GSR (left) using of MLRI model for both training and testing datasets
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Fig. 13 Comparison of the
predictive and measured daily
solar radiation with all developed
AI models throughout (1 June
2013–31 December 2013) and (1
January 2017–1 July 2019) at the
training and testing datasets
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Fig. 14 The violin plots of the
predicted and measured daily GSR
values for the best combination of
each data-driven model
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difference of standard deviations (Sd � 1.887 and 1.873). The MARS and MLRI models have closer standard deviation to the target
than the GRNN model. It is noteworthy that the standard deviation (Sd ) of the observed GSR values for the training and testing
datasets is 1.880 and 1.738, respectively.

In this part of the study, a comprehensive error analysis was conducted to evaluate the accuracy and reliability of current AI
models. The relative deviation value by formula (Dr � (GSRi − GSRo)/GSRo) was displayed versus observed GSR for the training
and testing period of simulation for each model in Fig. 16. Figure 16 demonstrates that the range of the relative deviation for the
LSSVM-ISA model by −3.35 ≤ Dr ≤ 0.526 is less than the MARS by −5.80 ≤ Dr ≤ 0.582, GRNN by −6.20 ≤ Dr ≤ 0.550,
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Fig. 15 The Taylor diagram of the
training and testing modes for
LSSVM-ISA, MARS, GRNN, and
MLRI to estimate the GSR
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and for MLRI by −4.47 ≤ Dr ≤ 1.260. Close examination of the error distribution plots vividly shows that for GSR > 4 all
understudy predictive models have reliable performance and acceptable accuracy in estimating daily GSR and the relative deviation
restricted in the range of −1 ≤ Dr ≤ 0.520.

Finally, a substantial error criterion is carried out to better understand the quantitative performance of all proposed models, which
expresses the amount of cumulative absolute percent of error frequency (Fig. 17). LSSVM-ISA model can predict 75% of the daily
GSR data with absolute relative error less than 6.1%, whereas 75% of the MARS, GRNN, and MLRI models as the second, third,
and fourth most accurate approaches provided prediction errors less than or equal to 8.2%, 9.74%, and 11.56%, respectively. Also,
all the equipped models can assess 90% of the data with an absolute relative error of less than 25%, which implies the reliability
of all data-driven approaches for the prediction of daily GSR. It is vividly clear that the results of LSSVM-ISA are in the most
satisfactory agreement with observed data sets in comparison with all the provided models.

4 Validation of the model with traditional approaches

In order to investigate the accuracy of the empirical equations in comparison with the AI-based methods used in the research, nine
empirical equations were examined and evaluated, which are introduced in Table 1. The inputs of the selected equations are the
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Fig. 16 The relative deviation plots of the developed data-driven models for predicting GSR: a LSSVM-ISA, b MARS, c GRNN, and d MLRI

Fig. 17 Percentage of cumulative
frequency of proposed AI models
versus the absolute percentage of
relative error in estimating GSR
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same as the AI-based models utilized in this research. The coefficients of the empirical equations are calculated using the ordinary
least square (OLS) method separately, and their values are given for each equation in Table 13. According to Table 13, the Bristow
and Campbell [39] equation with a mean absolute percentage error (MAPE) of 14.811% provides more accurate results than other
equations. The MAPE of Goodin et al. [44] and Hunt equations [43] is 14. 843% and 14.857%, respectively.

Table 14 shows a comparison between the best results of each model. According to Table 14, AI-based models have performed
better than the empirical and MLRI models. LSSVM-ISA model with MAPE � 8.233% has the least error among models.

Table 15 shows MAPE percent error for different empirical equations used in this research and error improvement by the best
LSSVM-ISA model. The results of Table 15 show that the best LSSVM-ISA model has reduced the MAPE error rate compared to
empirical models significantly. Comparing the best practical model (Bristow and Campbell [39]) and the best LSSVM-ISA model
shows a 6.578% reduction in MAPE percent.
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Table 13 Coefficient and accuracy of empirical equations to predict GSR

Model a b c d e R RMSE MAPE% NS

Swartman and Ogunlade [37] 6.08 1.8 − 0.065 − − 0.814 1.115 21.775 0.662

Hargreaves [38] 0.158 – – − − 0.919 0.754 17.011 0.845

Bristow and Campbell [39] 0.708 0.015 1.818 − − 0.925 0.728 14.811 0.856

De Jong and Stewart [40] 0.162 0.490 − 0.010 − 0.010 - − 0.925 0.727 15.473 0.856

Allen [41] 0.158 − − − − 0.919 0.754 17.012 0.845

Donatelli and Campbell [42] 0.665 0.006 3.526 − − 0.911 0.791 15.501 0.830

Hunt [43] 0.159 − 0.053 − − − 0.919 0.754 16.984 0.845

Hunt [43] 0.144 0.012 − 0.135 − 0.002 0.079 0.927 0.719 14.875 0.859

Goodin, Hutchinson, Vanderlip, and Knapp [44] 0.681 0.011 2.846 − − 0.921 0.751 14.843 0.847

Table 14 Comparison between the best empirical correlation and AI models

Model R RMSE MAPE% NS

Best LSSVM-ISA 0.980 0.391 8.233 0.957

Best MARS 0.974 0.426 9.003 0.948

Best GRNN 0.970 0.471 9.740 0.937

Best MLRI 0.956 0.584 11.567 0.903

Best Empirical 0.925 0.728 14.811 0.856

Table 15 Error improvement by best LSSVM-ISA model compared to empirical equations

Model MAPE% Error improvement by LSSVM-ISA %

Swartman and Ogunlade [37] 21.775 13.542

Hargreaves [38] 17.011 8.778

Bristow and Campbell [39] 14.811 6.578

De Jong and Stewart [40] 15.473 7.240

Allen [41] 17.012 8.779

Donatelli and Campbell [42] 15.501 6.968

Hunt [43] 16.984 8.751

Hunt [43] 14.875 6.642

Goodin, Hutchinson, Vanderlip, and Knapp [44] 14.843 6.610

5 Uncertainty

This section examines and evaluates the uncertainty analysis of the utilize models in predicting global solar radiation. The error value
of each sample is calculated from the relation e j � GSRp − GSRo. The mean value of the error of the relation is calculated using

e � ∑n
j�1e j , and finally, the standard deviation of the estimation error is calculated from the relation Sde �

√(
e j − e

)2
/n − 1.

If the value of e is negative, it indicates that the model underestimates the predicted values, and its positive value indicates the
overestimation of the model. High values of se indicate the high scattering of the model error, and increasing it will increase the
uncertainty of the model prediction.

Confidence intervals for the estimation values of the models can be determined using the values e and Se. Considering the ±1.96Se,
values of 95% confidence intervals are obtained. Table 16 shows the mean values of estimation error, standard error deviation, and
95% error confidence intervals. In all five models used in the present study, except for the empirical equation, the mean value of the
prediction error is positive, which indicates that the model is overestimating predicting values. Among the applied models, the best
empirical equation has the lowest mean value of the prediction error with a value of -0.011. Among AI-based models, LSSVM-ISA
and MARS have the lowest average error (e � 0.074). The LMRI method has the highest average error value (e � 0.207). The
lowest value of the uncertainty band±0.792 is for the LSSVM-ISA model, which indicates that this model has a lower uncertainty.
The highest uncertainty band±1.427 is for the Bristow and Campbell [39] equation, which indicates more uncertainty about the
empirical model results than other models.
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Table 16 Uncertainty estimates for GSR for best of each model

Model Mean prediction error e Se Width of uncertainty band

Best LSSVM-ISA 0.074 0.404 ±0.792

Best MARS 0.074 0.426 ±0.835

Best GRNN 0.132 0.469 ±0.919

Best MLRI 0.207 0.587 ±1.150

Best Empirical -0.011 0.728 ±1.427

6 Conclusions

Given the importance of accurately estimating solar radiation in the design of solar energy systems, a novel hybrid data-driven
approach comprised of LSSVM coupled with improved simulated annealing (ISA) approach (LSSVM-ISA) is developed to accu-
rately predict the daily global solar radiation (GSR) over 10 years (from 01 July 2009 to 1 July 2019) at Ahvaz station, in Iran. In
this research, the predictive input variable was the day of the year (1 to 366), average daily temperature (T ave, °C), sunshine hours
(Sh, hr), relative humidity (Rh, %), average wind velocity (W s, m/s) at 10 m and GSR (kWh/m2/day) was considered as a target for
ten input combinations. According to the obtained results, LSSVM-ISA model in the combination No. 5 (including day, Sh, T ave,

and Rh) for the testing mode outperformed the MARS, GRNN, and MLRI model in estimating daily GSR. The MARS model, in
combination No. 7 (including day, Sh, and Rh), was identified as the second accurate predictive approach for daily GSR estimating.
Also, the GRNN and MLRI models as third best rank and the weakest model had the best their performances in combination No. 10
(including day and Sh) and combination No.6 (consisting of all predictors excluding the relative humidity), respectively. According
to [70], for judgment of the accuracy of the GSR estimating procedure, the LSSVM-ISA and MARS models by having MAPE < 10%
are identified as high accurate estimating tools, and GRNN and MLRI models by 10 ≤ MAPE ≤ 20 are classified as good predictor
data-driven models to assess the daily GSR. Besides, a comparison between all models in 10 combinations demonstrated that the day
of the year and sunshine duration (Sh) due to existing in any the best combination performance are identified as the most effective
predictive variables in the daily GSR estimating process. Besides, comparing the obtained results of the empirical equations with
the AI models indicated that the AI models, especially the LSSVM-ISA method, can estimate the GSR more accurately than the
empirical methods. Finally, the uncertainty analysis showed that the proposed LSSVM-ISA has the lowest uncertainty (±0.792)
compared with the other AI methods. This demonstrates that the proposed method is more reliable and precise to estimate the GSR.
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Appendix 1

Multivariate adaptive regression spline (MARS)

Multivariate adaptive regression spline (MARS) scheme, as a nonlinear and nonparametric statistical regression model, is one of
the most popular machine learning models, which was first introduced by Friedman (1991) [17]. The MARS model automatically
is capable of mapping the intrinsic nonlinearities and interactions between predictors in data without an assumption about the
relationships between dependent and predictor variables to predict continuous objective variables accurately [55]. The main concept
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of MARS is splitting the predictor training data into several piecewise linear disjoint regions (or splines) by specific connection points
(called ‘knots’). Generally, the MARS model can adequately result in the flexible continuous modeling by fitting piecewise linear
regression belonging to each segment (spline) and predicting the linear and nonlinear objective [17, 56]. Splines, which are known
as the basis functions (BFs) by the smoothing process connection point, are capable of capturing the nonlinearities, curvatures, and
threshold features based on the piecewise linear functions. MARS model involves two-step forward and backward pruning iterative
procedures. During the stepwise forward process, the BFs were selected, and the location of potential knots was explored by an
adaptive regression algorithm, which mostly leads to a very complex and over-fitted model [57, 58]. Mathematically, the MARS
model can explain the relationship between predictors and output variable as follows:

Y � f (x) � β0 +
N∗∑

i�1

βi

K∏

j�1

BF ji (xv( j i)) (16)

where Y is objective variable; β0 is the intercept term; βn is the coefficient vector of ith spline basis functions; BFji is the basis
function; xv( j i) is the independent predictor of ith and jth products; K is the order of interaction limit, and N* is the number of
independent predictors. The piecewise linear basis functions implemented in the MARS model are generally expressed as [59]:

B+
F ji � (x − s ji )+ �

{
x − s ji x > s ji

0 therwise

√
2 (17)

B−
F ji � (s ji − x)+ �

{
s ji − x x < s ji

0 therwise
(18)

where B+
F ji and B−

F ji are the positive and negative parts of spline functions, respectively, and s ji denotes the knot of the spline
(threshold value).

Likewise, in the backward stepwise process, the redundant BFs provided among the previous process were eliminated by
implementing the generalized cross-validation (GCV) technique until the ‘lack of fit’ criterion is a minimum and estimating accuracy
enhancement [60]. The GCV value is given as follows [57, 59]:

GCVE �
∑N

j�1 (Yi − Ŷi )2

N
(

1 − F+0.5d∗(F−1)
N

)2 (19)

where Yi is the observed value of output variable of ith; Ŷi is ith predicted value by MARS; N � number of datasets; F is the number
of basis functions; and d∗ is a penalty value for each basis function comprised into the developed model.

Generalization regression neural network (GRNN)

Generalized regression neural network (GRNN), as a probabilistic-based neural network, was firstly proposed by Specht (1991)
[61]. GRNN model based on the nonparametric kernel regression network has been widely implemented in the field of classification
and regression. It is adequately capable of handling the nonlinear fitting problems with large-scale training samples. Unlike the
backpropagation and radial basis function ANN, GRNN has fewer adjustment parameters, and its learning algorithm rarely falls into
the local minimum [62]. GRNN has four-layer comprising the input layer, radial layer, regression layer, and an output layer. The
architecture of a GRNN model consists of precisely four layers, with a pattern (radial neurons) layer and a summation (regression)
layer placed between the input and output layers [63], as illustrated in Fig. 7. The pattern layer contains the clustering of the input
data in the training stage, and consequently, the neurons number in that is exactly equal to the number of data samples. Furthermore,
the summation layer always has a new neuron in comparison with the output layer, which is devoted to calculating the probability
density function, whereas rest of neurons are used for output calculation. Eventually, GRNN due to directly selecting an approximate
function between predictors and output variables spends less time than other ANNs [63].

Multivariate linear regression with interactions (MLRI)

The multivariate linear regression with interactions (MLRIs) is an efficient data-driven model that can obtain a regression by
considering the interaction between the predictors (xi ) on the independent variable (outcome) [64, 65]. An interaction effect happens
when a predictor has a different impact on the dependent output variable, depending on the values of another predictor. MLRI can
capture the regression relationship considering some interactions between a dependent variable (Y) and independent variables (xi )
by the following logic [64, 65]:

Y � θi0 +
K∑

i�1

θi xi +
K∑

i�1

K∑

j�1, j ��i

θi j xi x j + ε (20)

where θi j is the interaction coefficient; ε is a random error; and i,j are the index of two considering predictors.
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In the framework of the MLRI model, the significance of the interaction effect is specified using analysis of variance (ANOVA).
In this process, the p-value or probability value indicates the importance of each integration term in regression by α � 0.05, as a
criterion, which lower values of p-values or its corresponding F-values show it is the more statistically significant. Whenever the
p-values of each interaction term become less than α, interaction term will be preserved in outcome correlation (Y) and vice versa.

Appendix 2

Performance evaluation

To measure the degree of accuracy of the provided models, various visual efficient tools and statistical performance metrics were
employed. The graphical tools include scattering plots, error analysis plots, and Taylor diagrams. Taylor diagram is employed
for comparing the similarity patterns in polar space between predicted and observed values of GSR as the robust graphical tool.
Basically, the Taylor diagram simultaneously demonstrates the correlation coefficient (R), standard deviation (Sd ), and centered
root mean square error (cRMSE) [66]. The performance criteria consist of the correlation coefficient (R), mean root square error
(RMSE), mean absolute percentage error (MAPE), and Nash–Sutcliffe coefficient (NS) [67–69] which are expressed as following
relationships:

R �
∑N

i�1

(
GSRp,i − GSRp

) · (
GSRo,i − GSRo

)

√∑N
i�1

(
GSRp,i − GSRp

)2 ∑N
i

(
GSRo,i − GSRo

)2
(21)

RMSE �
(

1

N

N∑

i�1

(
GSRo,i − GSRp,i

)2

)0.5

(22)

MAPE �
(

100

N

) N∑

i�1

∣∣∣∣
GSRo,i − GSRp,i

GSRo,i

∣∣∣∣ (23)

NS � 1 −
∑N

i�1

(
GSRo,i − GSRp,i

)2

∑N
i�1

(
GSRo,i − GSRo

)2 (24)

cRMSE �
(

1

N

N∑

i�1

[(
GSRo,i − GSRo

) − (
GSRp,i − GSRp

)]
2

, (25)

Sdo� 1

N

N∑

i = 1

(
GSRo,i−GSRo

)2
,Sdp� 1

N

N∑

i = 1

(
GSRp,i − GSRp

)2
(26)

where GSRo,i is the ith observed daily global solar radiation, GSRp,i is the ith predicted daily global solar radiation, GSRo is mean
value of all the observed daily global solar radiation, GSRp is mean value of the predicted daily global solar radiation, and N is the
number of datasets.
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